
Computer Science 341

Discrete Mathematics

Final Exam

Outline of Solutions

Problem 1 [15 points]

A Huffman code for 3 symbols consists of the codewords 0, 10 and 11. Find the number

of {0, 1} strings of length n that are valid encodings with these codewords. In other words,

find the number of distinct strings of length n that can be obtained by concatenating (copies

of) the strings 0, 10 and 11. For example, 0101110 is a valid string (0 10 11 10) but 1100101

is not.

Solution:

Denote the number of valid strings of length n by an. We will find a recurrence formula

for an. Divide the set of all valid strings of length n into 3 classes:

(a) valid strings that start with 0;

(b) valid strings that start with 10;

(c) valid strings that start with 11.

Clearly every valid string belongs to exactly one class. Let us count number of strings

in the class (a). Observe that a string 0d2 . . . dn is valid if and only if the string d2 . . . dn is

valid. Therefore the number of strings in the class (a) equals the number of valid strings of

length n − 1, which equals an−1. Similarly, number of strings in class (b) equals an−2, and

number of strings in class (c) also equals an−2. We get the folowing recurrence relation:

an = an−1 + 2an−2.

The roots of the characteristic equation λ2−λ−2 = 0 are −1 and 2. So an = A (−1)n +B 2n

for some constants A and B.

Now a1 = 1 (the only valid string is 0), a2 = 3 (the valid strings are 00, 01, and 10).

Solving for A and B, we get an = (−1)n/3 + 2/3 · 2n.

Answer: an = (−1)n/3 + 2/3 · 2n.



Problem 2 [20 points]

Consider a cycle of length n with vertices v1, . . . , vn. vi is adjacent to vi+1 for 1 ≤ i ≤ n−1

and vn is adjacent to v1. We would like to assign one of k colors to each vertex in the cycle

such that adjacent vertices get different colors. Find the number of ways of doing this (as a

function of n and k).

Solution:

Let Tn be the number of colorings. Note that

Tn =number of proper colorings of a path on n vertices

− number of proper colorings of a path on n vertices, s.t. colors of v1 and vn are the same.

The first term equals k(k − 1)n−1 (there are k ways to color the first vertex, then there are

k− 1 ways to color the second vertex, there are k− 1 ways to color each consecutive vertex).

To compute the second term note that we can replace v1 and vn with a single vertex and get

a proper coloring of a cycle on n − 1 vertices. In fact, this replacement defines a bijection.

Therefore, the second term equals Tn−1. We have

Tn = k(k − 1)n−1 − Tn−1 = k(k − 1)n−1 − k(k − 1)n−2 + Tn−2 = . . .

T3 = k(k − 1)(k − 2).

Note that values of T1 and T2 are not well-defined since there are no cycles on 1 and 2

vertices. However, it is consistent to put T2 = k(k − 1), and T1 = 0 — these values give the

correct value for T3.

Expand the formula for Tn:

Tn = k
(

(k − 1)n−1 + · · · + (−1)n(k − 1) + T1

)

.

Add up the geometric progression

Tn = k(k − 1)
(k − 1)n−1 + (−1)n

(k − 1) − (−1)
= (k − 1)n + (−1)n(k − 1).

Answer: (k − 1)n + (−1)n(k − 1).



Problem 3 [20 points]

A game is played on an n × n board, as follows: Here (i, j) denotes the square in row i

and column j. The goal is to move a special piece (Tiger) from the bottom left corner square

(1, 1) to the upper right corner square (n, n). In each move, Tiger can move one square up or

one square to the right, i.e. from (i, j), he can move to (i + 1, j) or (i, j + 1). To complicate

matters, some squares on the board are marked as forbidden and Tiger is not allowed to

land on them. At the beginning of the game, each square on the board (other than (1, 1)

and (n, n)) is marked as forbidden at random with probability 1/2. These choices are made

independently for every square. Let pn be the probability that Tiger can move from (1, 1)

to (n, n) avoiding any forbidden squares. Find limn→∞ pn.

Hint: Think of the paths from (1, 1) to (n, n).

Solution:

There are
(

2(n−1)
n−1

)

= O(22n

√
n
) paths from the field (1, 1) to the field (n, n) (see problem 1a,

precept 2, http://www.cs.princeton.edu/courses/archive/fall05/cos341/Precepts/precept2sol.pdf). Each path

consists of 2n−3 squares (not counting the corner fields). Each of these squares is forbidden

with probability 1
2
. Therefore, the probability that a path survives (e.g. none of its fields is

forbidden) is 1
22n−3 . By the union bound, the probability that at least one path survives is

at most O(22n

√
n
· 1

22n−3 ) = O( 1√
n
). Therefore, pn = O( 1√

n
) tends to 0 as n → ∞.

Answer: limn→∞ pn = 0.

We used an approximation formula for binomial coefficients:

(

2n

n

)

= O

(

22n

√
n

)

.

This formula can be derived from the Stirling Approximation for n! as follows:

(

2n

n

)

=
(2n)!

n!n!
=

√

2π(2n)
(

2n
e

)2n
(1 + o(1))

(√
2πn

(

n
e

)n
(1 + o(1))

) (√
2πn

(

n
e

)n
(1 + o(1))

)

=
22n

√
πn

(1 + o(1)) = O

(

22n

√
n

)

.



Problem 4 [25 points]

A random tree on n vertices is formed in the following way: The vertices are added to

the tree in the sequence v1, . . . , vn. The first vertex v1 is considered the root. The ith vertex

vi is added to the tree by connecting it to one of the previous i− 1 vertices chosen uniformly

and at random from amongst v1, . . . , vi−1. Let Pi be the length of the path (i.e. number of

edges on the path) from vi to the root.

(a) [5 points] Let Rn = E[Pn]. Write a recurrence relation for Rn.

(b) [7 points] Use the recurrence for Rn to compute E[Pn].

Write down an exact expression (not necessarily in closed form) and also find a closed form

function f(n) such that E[Pn] = Θ(f(n)).

(c) [5 points] Let Sn = E[(Pn)2]. Write a recurrence relation for Sn.

(d) [8 points] Use the recurrence for Sn to compute E[(Pn)2].

Write down an exact expression (not necessarily in closed form) and also find a closed form

function g(n) such that E[(Pn)2] = Θ(g(n))

Solution:

a) We have

Rn+1 = E[Pn+1] =
n
∑

i=1

E[Pn+1|vn+1 is connected to vi] Pr[vn+1 is connected to vi]

=
n
∑

i=1

E[Pi + 1|vn+1 is connected to vi] ·
1

n

=
1

n

n
∑

i=1

(Ri + 1) = 1 +

∑n

i=1 Ri

n

Answer: Rn+1 = 1 +

∑n

i=1 Ri

n
.

b) We have

nRn+1 = n + (R1 + · · · + Rn);

(n − 1)Rn = (n − 1) + (R1 + · · · + Rn−1).

Subtracting the second identity from the first, we get

nRn+1 = nRn + 1.

So

Rn+1 = nRn + 1/n.



Note that R1 = 0. So

Rn+1 = 1 +
1

2
+ · · · + 1

n
= Hn.

Recall that Hn = ln n + O(1).

Answer: Rn = Hn−1 = Θ(ln n).

c) We have

Sn+1 = E[P 2
n+1] =

n
∑

i=1

E[P 2
n+1|vn+1 is connected to vi] Pr[vn+1 is connected to vi]

=
n
∑

i=1

E[(Pi + 1)2|vn+1 is connected to vi] ·
1

n

=
1

n

n
∑

i=1

(

E[P 2
i ] + E[2Pi] + 1

)

=
1

n

n
∑

i=1

(Si + 2Ri + 1)

Now, by part a, and then by part b,

2

n

n
∑

i=1

Ri = 2(Rn+1 − 1) = 2(Hn − 1).

We conclude

Sn+1 = 2Hn − 1 +
1

n

n
∑

i=1

Si.

Answer: Sn+1 = 2Hn − 1 + 1
n

∑n

i=1 Si.

d) Write recurrence relation for Sn+1 and Sn:

Sn+1 = 2Hn − 1 +
1

n

n
∑

i=1

Si;

Sn = 2Hn−1 − 1 +
1

n − 1

n−1
∑

i=1

Si.

Multiply the second formula by n−1
n

and subtract from the first formula:

Sn+1 −
n − 1

n
Sn = 2Hn − 2

n − 1

n
Hn−1 − 1 +

n − 1

n
+

Sn

n
.

We get

Sn+1 = Sn + 2Hn − 2
n − 1

n
Hn−1 −

1

n
.



Since S1 = E[P 2
1 ] = 0, we have

Sn+1 =
n
∑

i=1

(Si+1 − Si) =
n
∑

i=1

(

2Hi − 2
i − 1

i
Hi−1 −

1

i

)

= 2

(

n
∑

i=1

Hi −
n−1
∑

i=1

i

i + 1
Hi

)

− Hn = Hn + 2
n−1
∑

i=1

Hi

i + 1
.

Now,

2
n−1
∑

i=1

Hi

i + 1
= 2

n−1
∑

i=1

i
∑

j=1

1

i + 1
· 1

j
= 2

n
∑

i=2

i−1
∑

j=1

1

i
· 1

j
=

(

n
∑

i=1

1

i

)2

−
n
∑

i=1

1

i2
= H2

n −
n
∑

i=1

1

i2
.

Therefore,

Sn+1 = H2
n + Hn −

n
∑

i=1

1

i2
.

Since Hn = ln n + o(1), and
∑n

i=1
1
i2

is bounded by
∑∞

i=1
1
i2

= π2

6
, we get

Sn+1 = Θ((log n)2).

Answer:

Sn+1 = H2
n + Hn −

n
∑

i=1

1

i2
.

Sn+1 = Θ((log n)2).



Problem 5 [20 points]

Consider a sequence of graphs constructed as follows. G1 consists of a single vertex and

G2 consists of two vertices connected by an edge. Graph Gi+1 is constructed from Gi by

adding some vertices and edges as follows. Suppose Gi has vertex set V = {v1, . . . , vn}.
Then Gi+1 is constructed by adding vertices U ∪ {x} where U = {u1, . . . , un}. In addition

to the edges already present in Gi, the following edges are added to Gi+1: For every i, ui

is connected to x and ui is connected to every neighbor of vi. Note that G3 obtained from

this process is the 5-cycle. The goal of this problem is to analyze the number of colors in a

proper coloring of Gk. Recall that a proper coloring of a graph is an assignment of colors to

vertices so that adjacent vertices get different colors.

(a) [5 points] Prove that Gk has a proper coloring with at most k colors.

(b) [15 points] Prove that any proper coloring of Gk must use at least k colors.

Hint: If Gk+1 can be colored with k colors, show that Gk can be colored with k − 1 colors.

Solution:

a) We prove by induction on k that Gk has a proper coloring with at most k colors.

Base case k = 1: G1 consists of a single vertex, which can be colored with one color.

Inductive step: Suppose Gk has a proper coloring with k colors. We color Gk+1 with k+1

colors as follows:

1) We color Gk (e.g. vertices in V ) with k colors (we can do this by the inductive

hypothesis).

2) Color each vertex ui with the same color as vi.

3) Finally, color v0 with a new color k + 1.

We need to show that this coloring is proper, e.g. there are no adjacent vertices of the same

color.

1) Clearly, any adjacent vertices vi and vj are colored with different colors.

2) v0 is colored with the color which differs from all other colors.

3) Any two vertices in U are not adjacent.

4) If vertices ui and vj are adjacent, then vi and vj are also adjacent, and thus they are

colored with different colors. Since ui and vi are colored with the same color, ui and vj are

colored with different colors.

We showed that the coloring is proper. This concludes the inductive step.

b) We prove by induction on k that Gk+1 cannot be colored with k colors.

Base case k = 1: G1 clearly cannot be colored with 0 colors.

Inductive step: Suppose that Gk cannot be colored with k− 1 colors. We will prove that

Gk+1 cannot be colored with k colors. Assume the contrary.



Then consider a proper coloring of Gk+1 with k colors. Denote the color of the vertex v0

by c. If none of the vertices in Gk are colored with the color c we are done: Gk is colored

with at most k − 1 colors. Otherwise, let us recolor all the vertices colored with the color c.

Namely, if vi is of color c, recolor it with the color of ui. Note that ui is not colored with c,

since ui is adjacent to v0. Thus the new coloring of Gk uses at most k − 1 colors.

We claim that the new coloring is a proper coloring of Gk (but not necessarily of Gk+1).

Indeed, let vi and vj be two adjacent vertices. If none of them have been recolored, they

are colored in different colors. Note that it is not possible that the both of them have been

recolored, since these vertices are adjacent, and thus both of them could not be colored with

the color c. Suppose that vi has been recolored. Since vi and vj are adjacent, ui and vj are

also adjacent and are colored with different colors. But ui is colored with the same color as

vi, so vi and vj are of different colors.

We get a proper k − 1-coloring of Gk, which contradicts to the inductive hypothesis.


