Computer Science 341 Discrete Mathematics

Midterm Exam

Due at the beginning of class on Wednesday, November 9, 2005

There are 5 problems on this exam. All carry the same weight.

Collaboration Policy: Do not collaborate on the midterm exam.

Problem 1

Express each of the following summations as $\Theta(f(n))$ where f(n) is an appropriate function of n in closed form.

a)
$$\sum_{k=1}^{n} (1.01)^{k}.$$

b)
$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}}.$$

c)
$$\sum_{k=1}^{n} \frac{1}{k \log k}.$$

d)
$$\sum_{k=1}^{n} \left(1 + \frac{1}{k}\right)^{k}.$$

Problem 2

The running time T(n) of a newly developed algorithm satisfies the following recurrence relation:

$$T(n) = 4T(n/2) - 4T(n/4) + n$$
 $T(1) = 1$ $T(2) = 4.$

Find a closed form expression for the running time of this algorithm for instances of size $n = 2^k$, where k is an integer.

Problem 3

Pick a random natural number r between 0 and 1000000: $0 \le r < 1000000$. What is the probability that the sum of its digits is divisible by 10?

Problem 4

Consider a sequence of n independent tosses of a fair coin. A *run* is defined to be a maximal sequence of contiguous tosses that are either all heads or all tails. e.g. the sequence HHTHHTTTHH has 5 runs of length 2,1,2,3 and 2 respectively.

a) Compute the probability that there are exactly k runs.

b) Compute the probability that there are exactly k runs and every run is of length at most 2.

Problem 5

Two coins are placed in a bag. One of them is a fair coin, i.e. it comes up heads with probability 1/2 and tails with probability 1/2. The other is a special coin with tails on both sides. One of the coins is picked from the bag at random and this coin is tossed n times.

Let A_i be the event that the coin comes up tails on the i^{th} toss.

- a) Calculate $\Pr[A_i]$.
- b) Calculate $\Pr[A_2|A_1]$.
- c) Calculate $\Pr[A_k | A_1 \cap A_2 \cap \ldots \cap A_{k-1}].$