1. (15) The goal of this problem is to prove the following identity:

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} \cdot 2^{n-2k} = n + 1. \tag{1}
\]

a. Recall that \(\{0,1\}^n \) is the set of all bit strings of length \(n \). For every \(i: 1 \leq i \leq n - 1 \), let

\[
A_i = \{(x_1, x_2, \ldots, x_n) \in \{0,1\}^n : x_i = 0, x_{i+1} = 1\}.
\]

Thus, \(A_i \) is the set of length-\(n \) bit strings with 0 in position \(i \) and 1 in position \(i + 1 \).

Prove, that

\[
\sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n-1} |A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}| = \binom{n-k}{k} \cdot 2^{n-2k}.
\]

(Here, it is understood that the sum is taken over all sequences satisfying the inequality under the \(\sum \).)

b. Prove that \(|\{0,1\}^n - \bigcup_{1 \leq i \leq n-1} A_i| = n + 1 \). (Here, \(S-T \) denotes the set of elements that are in set \(S \), but are not in set \(T \).)

Hint: Find a simple description of strings not contained in any set \(A_i \).

c. Prove the identity given in Eq. (1) above.
2. (12) Miss McGillicuddy never goes outside without a collection of pets. In particular:
 • She brings 3, 4, or 5 dogs.
 • She brings a positive number of songbirds, which always come in pairs.
 • She may or may not bring her alligator, Freddy.

Let \(s_n \) denote the number of different collections of \(n \) pets that can accompany her. For example, \(s_6 = 2 \) since there are 2 possible collections of 6 pets:
 • 3 dogs, 2 songbirds, 1 alligator
 • 4 dogs, 2 songbirds, 0 alligators.

a. Give a closed-form generating function for the sequence \(\langle s_0, s_1, s_2, s_3, \ldots \rangle \).

b. From this generating function, find a closed-form expression for \(s_n \). (Your answer may involve several cases.)

3. (12) In this problem, we use generating functions to determine the number of ways to make change for \(n \) cents using pennies, nickels, dimes and quarters. (For instance, there are two ways to make change for 7 cents — using 7 pennies, or using 2 pennies and 1 nickel.)

 a. Find, in closed-form, a generating function for which the coefficient of \(x^n \) is equal to the number of ways to make change for \(n \) cents using only pennies. Repeat this step for each of the three other coin types.

 b. Find, in closed form, a generating function for which the coefficient of \(x^n \) is equal to the number of ways to make change for \(n \) cents using pennies, nickels, dimes and quarters.

 c. Explain how to use this function from the last part to determine the number of ways to change 99 cents; you do not have to provide the answer or actually carry out the process.

4. (15) In this problem, we will use generating functions to solve the recurrence:

\[
\begin{align*}
t_0 &= 0 \\
t_1 &= 1 \\
t_n &= 5t_{n-1} - 6t_{n-2} + n^2 \quad (\text{for } n \geq 2)
\end{align*}
\]

a. Find a closed-form generating function \(F(x) \) for the sequence \(\langle t_0, t_1, t_2, \ldots \rangle \).

b. Rewrite this generating function as a sum of fractions of the form:

\[
\frac{A}{(1 - \alpha x)^k}
\]

where \(A \) and \(\alpha \) are real (or potentially complex) constants, and \(k \) is a natural number.

c. Find a closed form for the coefficients of each of the fractions \(A/(1 - \alpha x)^k \), and use the addition rule to obtain a closed-form expression for \(t_n \).