
Assignment 2 FAQ

Zhe Wang
Oct, 11th 2006

Two *_entry() in Entry.S

Kernel_entry()
– Used to switch between user space process and the kernel
– In the future, if we have syscall like open(), then only

kernel_entry will be used.
Scheduler_entry()
– Used to switch between kernel threads/(process that is in

kernel)
What syscall yield() goes through:
– First goes through kernel_entry to switch from user ->

kernel
– Then goes through scheduler_entry() to switch between

processes/threads.

Two yield() and exit()

There are two copies of the same functions!
– Syslib.c:

void yield(void) {
SYSCALL(SYSCALL_YIELD);

}
– Scheduler.c (To be implemented by you!)

One is called within the user space by the
processes when they want to enter kernel. (Eg:
process1.c)
The other is linked with the kernel, it is called
directly by threads! (Eg: th1.c)
– Check your Makefile

Why two stacks for
process

User stack
– Used when the process is running in the

user space
Kernel stack
– Used after the process enter the kernel
In practice, for this assignment, only
using one kernel_stack will still work.
(why?)

Synchronization

Lock implementation
– You do not have to implement TAS (or cli)

kind of mutual exclusion. (For this
assignment, it is non-preemptive)

– Why do you need to use “While”?
Think: what if two threads are blocked
waiting for the same lock?
Or if some other process acquire the lock
even before the unblocked process got a
chance to run.

How to handle PCB

PCBs are statically allocated in kernel in this
assignment (a static array)
We do not ask you to recycle PCBs in this
assignment (to make your life easier). Same
applies to stack allocation.
When process exit(), you can just remove
its PCB from the ready queue and “throw” it
away.

Context switch!

Flow of control:
User_space yield() ->

Syslib.c: (*entry_point)(i) ->
entry.S: kernel_entry ->
kernel.c: kernel_entry_helper ->

scheduler.c: yield() ->
entry.S: scheduler_entry ->

scheduler.c: scheduler() ->
scheduler.c: dispatch()

Then WHAT!?

Parallel universe!

Process 1
User_space yield() ->

Syslib.c: (*entry_point)(i) ->
entry.S: kernel_entry ->

kernel.c: kernel_entry_helper ->
scheduler.c: yield() ->

entry.S: scheduler_entry ->
scheduler.c: scheduler() ->

scheduler.c: dispatch()

Process 2
User_space yield() ->

Syslib.c: (*entry_point)(i) ->
entry.S: kernel_entry ->

kernel.c: kernel_entry_helper ->
scheduler.c: yield() ->

entry.S: scheduler_entry ->
scheduler.c: scheduler() ->

scheduler.c: dispatch()

Process 1
PCB
Kernel_stack

Process 2
PCB
Kernel_stack

First time?

When the process/thread is switched
to for the first time:
– Kernel_stack does not look like last slide.
– Need special treatment to “start” the

process

Misc

Inline assembly:
"jmp *%0"::"q“(addr)
(If you use “jmp %0”, it will be treated as relative

jmp)

In_kernel (inside pcb_t from last precept)
– It is a boolean: whether it is process or thread
– So better name it as: is_thread

Ignore the jmp code in entry.S (you should
replace them with your own code)

Misc (cont.)

Saving registers onto stack or PCB
PUSHAD (intel syntax) => PUSHAL
(AT&T syntax)
– Check using AS: 80386 dependent

features, at:
http://www.gnu.org/software/binutils/manual/gas-

2.9.1/html_chapter/as_16.html#SEC196
To access current_running in entry.S: Just
refer it by name (compiler will handle it)

