Assignment 2 FAQ

Zhe Wang
Oct, 11 2006

Two *_entry() in Entry.S

= Kernel_entry()
— Used to switch between user space process and the kernel
— In the future, if we have syscall like open(), then only
kernel_entry will be used.
m Scheduler_entry()
— Used to switch between kernel threads/(process that is in
kernel)
m What syscall yield() goes through:

— First goes through kernel_entry to switch from user ->
kernel

— Then goes through scheduler_entry() to switch between
processes/threads.

Two yield() and exit()

m There are two copies of the same functions!
— Syslib.c:
void yield(void) {
SYSCALL(SYSCALL_YIELD);
}

— Scheduler.c (To be implemented by you!)
m One is called within the user space by the

processes when they want to enter kernel. (Eg:

processl.c)

m The other is linked with the kernel, it is called
directly by threads! (Eg: thl.c)

— Check your Makefile

Why two stacks for
process

m User stack

— Used when the process is running in the
user space

m Kernel stack
— Used after the process enter the kernel
m In practice, for this assignment, only

using one kernel_stack will still work.
(why?)




Synchronization

m Lock implementation

—You do not have to implement TAS (or cli)
kind of mutual exclusion. (For this
assignment, it is non-preemptive)

—Why do you need to use “While”?

m Think: what if two threads are blocked
waiting for the same lock?

m Or if some other process acquire the lock
even before the unblocked process got a
chance to run.

How to handle PCB

m PCBs are statically allocated in kernel in this
assignment (a static array)

m We do not ask you to recycle PCBs in this
assignment (to make your life easier). Same
applies to stack allocation.

m When process exit(), you can just remove
its PCB from the ready queue and “throw” it

away.

Context switch!

= Flow of control:
User_space yield() ->
Syslib.c: (*entry_point)(i) ->
entry.S: kernel_entry ->
kernel.c: kernel_entry_helper ->
scheduler.c: yield() ->
entry.S: scheduler_entry ->
scheduler.c: scheduler() ->
scheduler.c: dispatch()
Then WHAT!?

Parallel universe!

Process 1

User_space yield() ->
Syslib.c: (*entry_point)(i) ->
entry.S: kernel_entry ->

kernel.c: kernel_entry_helper ->

scheduler.c: yield() ->
entry.S: scheduler_entry ->

scheduler.c: scheduler() ->

scheduler.c: dispatch()

Process 2

User_space yield() ->
Syslib.c: (*entry_point)(i) ->
entry.S: kernel_entry ->

kernel.c: kernel_entry_helper ->

scheduler.c: yield() ->
entry.S: scheduler_entry ->

scheduler.c: scheduler() ->

scheduler.c: dispatch()

PCB
Kernel_stack

Process 1 >

Process 2
PCB
Kernel_stack




First time?

m When the process/thread is switched
to for the first time:
— Kernel_stack does not look like last slide.

— Need special treatment to “start” the
process

Misc

= Inline assembly:
"jmp *%0"::"q"“(addr)
(If you use “jmp %07, it will be treated as relative
jmp)
m In_kernel (inside pcb_t from last precept)
— It is a boolean: whether it is process or thread
— So better name it as: is_thread

m Ignore the jmp code in entry.S (you should
replace them with your own code)

Misc (cont.)

m Saving registers onto stack or PCB

m PUSHAD (intel syntax) => PUSHAL
(AT&T syntax)

— Check using AS: 80386 dependent
features, at:
http://www.gnu.org/software/binutils/manual/gas-

2.9.1/html chapter/as 16.htmI#SEC196

m To access current_running in entry.S: Just
refer it by name (compiler will handle it)




