
1

1

COS318 Precept 2

Bootup Mechanism

Wei Dong

Sept. 27, 2006

2

Outline

� More about X86 assembly language

� bootblock.s

� createimage.c

2

3

DF and String instructions

� lodsb: %al � %ds:(%si), update %si

� stosb: %es:(%di) � %al, update %di

� movsb: %es:(%di) � %ds:(%si), update
%si and %di

� All string instructions update indices by:

� If DF == 1 then index � index - 1

� If DF == 0 then index � index + 1

4

Repeat String Operations

� rep only work with string instructions
�Repeat while %cx != 0

�Decrease %cx by 1 each time

� Usage
�Setup %ds:%si and/or %es:%di

�cld/std

�%cx � number of bytes

� rep lodsb/stosb/movsb

3

5

Calling convention

� How to pass parameters & receive result

� cdecl, pascal, fastcall, stdcall, …

� Use same convention for both calling & called
functions

� cdecl:
� Parameters pushed to stack from right to left

� Stack cleanup performed by the caller

� Return value in %eax

� %eax, %ecx, %edx are available for function

6

Example (32-bit code)

int function (int a, int b);

int a, b, x;

…

x = function(a,b);

pushl b

pushl a

call function

add $12, %esp

movl %eax, x

4

7

Example (cont.)
int function (int a, int b)
{

int c = a + b;
return c;

}

b0x8FFF8

…0x8FFFC

a0x8FFF4

return addr0x9FFF0

old %ebp0x9FFEC

c0x9FFE8

%ebp

8

Stack layout in 16-bit code

param 14(%bp)

param 26(%bp)

ret %ip2(%bp)

old %bp(%bp)

local var-2(%bp)

param 16(%bp)

ret %cs4(%bp)

ret %ip2(%bp)

old %bp(%bp)

local var-2(%bp)

Short call Long call

5

9

bootblock.s: 16-bit or 32-bit?

� Concepts
� 16/32-bit code, real/protected mode

� X86: start at real mode, later switch to protected
mode

� The clean approach:
� Bootloader does the switch
� Kernel is pure 32-bit protected mode code
� See bootblock.s in future projects if interested

� This project:
� Only work with real mode

10

bootblock.s: Common Errors

� Not setting up %ds, %ss, %sp

� No “$” for constants

� Wrong offset from %bp for parameters

� Insert instructions before os_size

6

11

Moving code!

� Code can be moved as data
� Using label to figure out where to jump to

start:
jmp over
…
rep movsb
ljmp ?

next:

Jump to where?

Assume code moved to %es:%di, then

%cs �%es

%ip � %di + $(next – start)

How to do that?

12

Disc geometry

cylinder 0, head 0, sector 1

…

cylinder 0, head 0, sector MAX_SEC

cylinder 0, head 1, sector 1

…

cylinder 0, head MAX_HEAD, secotr MAX_HEAD

cylinder 1, head 0, sector 1

…

…

Use INT 0x13 Function 8 for MAX_SEC and
MAX_HEAD

7

13

Offset address overflow

� INT 0x13 use %es:%bx as buffer

� %bx is 16-bit, range from 0x0000-0xFFFF

� Example
Assume: %bx = 0xFEA0, then after reading a sector

%bx + 0x200 = 0x00A0, lose 0x10000

Solution: update %es to reflect the overflow

Problem: how to detect overflow, how to adjust %es?

14

Get ELF segment information

� How to avoid dealing with the file format?

�Write the output of readelf to a text file

�Read from that text file

�Or use popen to avoid a temporary file

� But that’s not interesting

8

15

createimage.c

� Segments in program header table is not
ordered!

� Actually no need to pad after internal segments

� fseek beyond the end of the file will automatically
cause the next file writing operation to fill the gap with
0s.

� Pad at the end so the whole file is divisible by
0x200

