
1

1

COS318 Project 1

Bootup Mechanism

Wei Dong

Sept. 20, 2006

2

Basic information

� This semester: 6 projects, a tiny OS kernel

�Wei Dong: 1, 3, 4

�Zhe Wang: 2, 5, 6

� Lab: Friend Center 010

� Login with OIT username/password

� Feel free to contact the TA if there’s a 

problem with the machines



2

3

What’s the problem?

�What is a kernel?

�How is a program normally run?

� Supported by the OS

� (Also restricted by the OS)

�But how does the OS itself get loaded?

� Bad news: In the beginning, there is bare 

machine…

� (Not totally bare, we still have the BIOS)

� Good news: we can do anything with it

4

PC Bootup Process

� Start from FFFF:0000 (ROM BIOS)

� Self test and initialization

� Search for boot device

�Bootblock: end with “0x55,0xAA”

� Load the 1st sector to 07C0:0000

� Jump to 07C0:0000



3

5

Dealing with the limitation
� BIOS loads only the first sector (512 bytes)

� But the kernel is larger

� Bootblock:
� Reside in the boot sector

� Load the whole kernel into memory

� Where is the kernel?
� Real life: kernel as an executable file in the disk file system

� Linux: /boot/vmlinuz

� Bootloader understands the file system and executable file format

� Our projects

� Memory layout pre-calculated

� The Memory Image stored in the sectors right after the bootblock

6

What You Must Do

� bootblock.s

�Load the kernel

�Setup stack, data segments

�Transfer control to kernel

� createimage.c

�Extract code and data from executables 

�Pack into boot disk (bootblock image + 
kernel image)



4

7

What We Provide

� bootblock_example.s

� bootblock.s

� createimage.c

� createimage.given

� kernel.s

� Makefile

You can start with either part

8

The Makefile
kernel: kernel.s

bootblock: bootblock.s

createimage: createimage.c

image: createimage bootblock kernel
./createimage bootblock kernel

boot: image
cat ./image > /dev/sda



5

9

Bootstrapping Layout

Kernel
Kernel

Bootblock

Memory (segment:offset)

Stack

BIOS data
0x00000

0x01000

0xb8000

0xfffff

0x07c00

0x9fffe

0x90000

(0x0000:0x1000)

(0x7c0:0x0000)

(0x9000:0xfffe)

BIOS

Disk
Bootblock

10

bootblock.s



6

11

When BIOS gives control to you

� CS = 0x07C0

� IP = 0x0000

� DL = Boot device number

�You will load the kernel from this device

� Don’t assume things to be there…

�You’ll have to setup the segments and stack if 

you want to use them

12

bootblock.s
Read the kernel into memory (INT13)

�Kernel starts at 0x0:0x1000

�Use hardcoded kernel size 
� (os_size: number of sectors)

� Set the kernel data segment and stack

�DS=0x0

�SS=0x9000, ESP=0xFFFE

(The kernel is 32bit, so setup the 32bit environment)

� Transfer control to kernel

�Jump to 0x0:0x1000



7

13

Problem

Kernel

Bootblock

Memory (segment:offset)

Stack

BIOS data
0x00000

0x01000

0xb8000

0xfffff

0x07c00

0x9fffe

0x90000

(0x0000:0x1000)

(0x7c0:0x0000)

(0x9000:0xfffe)

What if a big kernel 
overwrites the bootblock?

(Extra credit)

14

createimage.c



8

15

createimage.c
� Read a list of executable files 

(ELF)

� Write segments (real code) into 

bootblock + kernel image file

� Utilities: objdump, readelf Program Header Table

ELF Header

Segment 1

Segment 2

…

ELF

16

A look into the ELF format

e_phnum

e_phentsize

…

…

e_phoff

…

ELF header

…

Entry 2

Entry 1

Program header 

table

p_filesz

p_memsz

…

p_vaddr

p_offset

…

Program Header

Include elf.h for the data type definition



9

17

ELF Data Layout

Program Header Table

ELF Header

Segment i

Segment j

…

ELF

Segment j

Segment i

…

Memory

Segment j

Bootblock?

Segment i

…

Boot Image

File Offset = Memory Address – OS Start + sizeof(bootblock)

18

createimage.c

� Read ELF header to find offset of program 
header table

� Read program header to find start address, size 
and location of segment

� Pad and copy segment into image file
� Note that bootloader is treated differently

� Write kernel size to hardcoded location in image 
file

� Write the boot signature


