COS318 Project 1
Bootup Mechanism

Wei Dong
Sept. 20, 2006

Basic information

m This semester: 6 projects, a tiny OS kernel
Wei Dong: 1, 3, 4
Zhe Wang: 2, 5, 6

m Lab: Friend Center 010

m Login with OIT username/password

m Feel free to contact the TA if there’s a
problem with the machines

What's the problem?

What is a kernel?

How is a program normally run?
m Supported by the OS
= (Also restricted by the OS)
But how does the OS itself get loaded?

» Bad news: In the beginning, there is bare
machine...

= (Not totally bare, we still have the BIOS)
m Good news: we can do anything with it

" JEE
PC Bootup Process

m Start from FFFF:0000 (ROM BIOS)
m Self test and initialization
m Search for boot device

Bootblock: end with “0x55,0xAA”
m Load the 1st sector to 07C0:0000
m Jump to 07C0:0000

Dealing with the limitation

BIOS loads only the first sector (512 bytes)
But the kernel is larger

Bootblock:
Reside in the boot sector
Load the whole kernel into memory
Where is the kernel?
Real life: kernel as an executable file in the disk file system
m Linux: /boot/vmlinuz
= Bootloader understands the file system and executable file format
Our projects
= Memory layout pre-calculated
= The Memory Image stored in the sectors right after the bootblock

What You Must Do

m bootblock.s
Load the kernel
Setup stack, data segments
Transfer control to kernel

m createimage.c

Extract code and data from executables

Pack into boot disk (bootblock image +
kernel image)

= JEE
What We Provide

m bootblock_example.s
m bootblock.s

m createimage.c

m createimage.given

m kernel.s

m Makefile

You can start with either part

The Makefile

kernel: kernel.s

bootblock: bootblock.s

createimage: createimage.c

image: createimage bootblock kernel

/createimage bootblock kernel

: image
cat ./image > /dev/sda

" N
Bootstrapping Layout

DiSk Memory (segment:offset)

1 Bootblock 0x00000
I 0x01000

(0x0000:0x1000)

0x07c00
Bootblock (0x7c0:0x0000)

0x90000
Stack O0x9fffe

(0x9000:0xfffe)

0xb8000

Oxfffff

bootblock.s

10

" JJEE
When BIOS gives control to you

m CS = 0x07CO0
m |P = 0x0000
m DL = Boot device number
You will load the kernel from this device
m Don’t assume things to be there...

You'll have to setup the segments and stack if
you want to use them

11

bootblock.s

Read the kernel into memory (INT13)
Kernel starts at 0x0:0x1000
Use hardcoded kernel size
m (0S_size: number of sectors)
m Set the kernel data segment and stack
DS=0x0
SS=0x9000, ESP=0xFFFE

(The kernel is 32bit, so setup the 32bit environment)
m Transfer control to kernel
Jump to 0x0:0x1000

12

" NN

Problem
M e m O I'y (segment:offset)

0200000

What if a big kernel
overwrites the bootblock?

(Extra credit)

0x01000

(0x0000:0x1000)

0x07c00
Bootblock (O§7c0 :0x0000)

0x90000
Stack O0x9fffe

(0x9000:0xfffe)

0xb8000

Oxfffff

13

createimage.c

14

createimage.c

m Read a list of executable files

(ELF) ELF
m Write segments (real code) into ELF Header
bootblock + kernel image file
m Utilities: objdump, readelf Program Header Table
Segment 1
Segment 2

15

= JEE
A look into the ELF format

ELF header Program Header
.es Program header .

e_phoff —~, Eb:try] / p_offset

Entry 2 p_\{addr
e_phentsize p_filesz
e_phnum p_memsz

Include elf.h for the data type definition

16

ELF Data Layout

ELF Memory
ELF Header Boot Image
Bootblock?
Program Header Table Segment |
/ Segment j
Segment i Segment i
Segment i
Segment j

File Offset = Memory Address — OS Start + sizeof(bootblock)
17

" JE
createimage.c

m Read ELF header to find offset of program
header table

m Read program header to find start address, size
and location of segment
m Pad and copy segment into image file
Note that bootloader is treated differently
] ¥Yrite kernel size to hardcoded location in image
ile
m Write the boot signature

18

