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Bootup Mechanism

Wei Dong
Sept. 20, 2006

Basic information

m This semester: 6 projects, a tiny OS kernel
Wei Dong: 1, 3, 4
Zhe Wang: 2, 5, 6

m Lab: Friend Center 010

m Login with OIT username/password

m Feel free to contact the TA if there’s a
problem with the machines




What's the problem?

What is a kernel?

How is a program normally run?
m Supported by the OS
= (Also restricted by the OS)
But how does the OS itself get loaded?

» Bad news: In the beginning, there is bare
machine...

= (Not totally bare, we still have the BIOS)
m Good news: we can do anything with it

" JEE
PC Bootup Process

m Start from FFFF:0000 (ROM BIOS)
m Self test and initialization
m Search for boot device

Bootblock: end with “0x55,0xAA”
m Load the 1st sector to 07C0:0000
m Jump to 07C0:0000




Dealing with the limitation

BIOS loads only the first sector (512 bytes)
But the kernel is larger

Bootblock:
Reside in the boot sector
Load the whole kernel into memory
Where is the kernel?
Real life: kernel as an executable file in the disk file system
m Linux: /boot/vmlinuz
= Bootloader understands the file system and executable file format
Our projects
= Memory layout pre-calculated
= The Memory Image stored in the sectors right after the bootblock

What You Must Do

m bootblock.s
Load the kernel
Setup stack, data segments
Transfer control to kernel

m createimage.c

Extract code and data from executables

Pack into boot disk (bootblock image +
kernel image)
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What We Provide

m bootblock_example.s
m bootblock.s

m createimage.c

m createimage.given

m kernel.s

m Makefile

You can start with either part

The Makefile

kernel: kernel.s

bootblock: bootblock.s

createimage:  createimage.c

image: createimage bootblock kernel

/createimage bootblock kernel

: image
cat ./image > /dev/sda
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Bootstrapping Layout

DiSk Memory (segment:offset)

1 Bootblock 0x00000
I 0x01000

(0x0000:0x1000)

0x07c00
Bootblock (0x7c0:0x0000)

0x90000
Stack O0x9fffe

(0x9000:0xfffe)

0xb8000

Oxfffff

bootblock.s
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When BIOS gives control to you

m CS = 0x07CO0
m |P = 0x0000
m DL = Boot device number
You will load the kernel from this device
m Don’t assume things to be there...

You'll have to setup the segments and stack if
you want to use them
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bootblock.s

Read the kernel into memory (INT13)
Kernel starts at 0x0:0x1000
Use hardcoded kernel size
m (0S_size: number of sectors)
m Set the kernel data segment and stack
DS=0x0
SS=0x9000, ESP=0xFFFE

(The kernel is 32bit, so setup the 32bit environment)
m Transfer control to kernel
Jump to 0x0:0x1000
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Problem
M e m O I'y (segment:offset)

0200000

What if a big kernel
overwrites the bootblock?

(Extra credit)

0x01000

(0x0000:0x1000)

0x07c00
Bootblock (O§7c0 :0x0000)

0x90000
Stack O0x9fffe

(0x9000:0xfffe)

0xb8000

Oxfffff
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createimage.c
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createimage.c

m Read a list of executable files

(ELF) ELF
m Write segments (real code) into ELF Header
bootblock + kernel image file
m Utilities: objdump, readelf Program Header Table
Segment 1
Segment 2
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A look into the ELF format

ELF header Program Header
.es Program header .

e_phoff —~, Eb:try ] / p_offset

Entry 2 p_\{addr
e_phentsize p_filesz
e_phnum p_memsz

Include elf.h for the data type definition
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ELF Data Layout

ELF Memory
ELF Header Boot Image
Bootblock?
Program Header Table Segment |
/ Segment j
Segment i Segment i
Segment i
Segment j

File Offset = Memory Address — OS Start + sizeof(bootblock)
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createimage.c

m Read ELF header to find offset of program
header table

m Read program header to find start address, size
and location of segment
m Pad and copy segment into image file
Note that bootloader is treated differently
] ¥Yrite kernel size to hardcoded location in image
ile
m  Write the boot signature
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