
1

Algorithms and Data Structures 
Princeton University 

Fall 2006

Kevin Wayne

2

Overview

What is COS 226?

! Intermediate-level survey course.

! Programming and problem solving with applications.

! Algorithm:  method for solving a problem.

! Data structure:  method to store information.

Topic

sorting

searching

graphs

Data Structures and Algorithms

quicksort, mergesort, heapsort, radix sorts

hash table, BST, red-black tree, B-tree

DFS, Prim, Kruskal, Dijkstra, Ford-Fulkerson

strings KMP, Rabin-Karp, TST, Huffman, LZW

geometry Graham scan, k-d tree, Voronoi diagram

data types stack, queue, list, union-find, priority queue

A misperception:  algiros  [painful]  +  arithmos  [number].

3

Impact of Great Algorithms

Internet.  Web search, packet routing, distributed file sharing.

Biology.  Human genome project, protein folding.

Computers.  Circuit layout, file system, compilers.

Computer graphics.  Hollywood movies, video games.

Security.  Cell phones, e-commerce, voting machines.

Multimedia.  CD player, DVD, MP3, JPG, DivX, HDTV.

Transportation.  Airline crew scheduling, map routing.

Physics.  N-body simulation, particle collision simulation.

…

For me, great algorithms are the poetry of computation.

Just like verse, they can be terse, allusive, dense, and even

mysterious. But once unlocked, they cast a brilliant new

light on some aspect of computing.     - Francis Sullivan

4

Why Study Algorithms?

Using a computer?

! Want it to go faster?  Process more data?

! Want it to do something that would otherwise be impossible?

Algorithms as a field of study.

! Philosophical implications.

! Burgeoning application areas.

! Old enough that basics are known.

! New enough that new discoveries arise.

20th century science
(formula based)

21st century science
(algorithm based)

bioinformatics
neurosciences
computational physics
…! 

E  =  mc
2

! 

F  =  ma

! 

F  =  
Gm

1
m

2

r
2

  

! 

"
h

2

2m
#2

+ V (r)
$ 

% 
& 

' 

( 
)  *(r)  =  E *(r)



5

The Usual Suspects

Lectures.  [Kevin Wayne]

! TTh  11-12:20,  Friend 008.

Precepts.  [Wolfgang Mulzer, Janet Yoon]

! Th  12:30, Friend 108.

! Th 3:30, Friend 108.

! Discuss programming assignments, exercises, lecture material.

! First precept meets 9/21.

6

 Questionnaire

Please fill out questionnaire so that we can adapt course as needed.

! Who are you?

! Why are you taking COS 226?

! Which precept(s) can you attend?

! What do you hope to get out of it?

! What is your programming experience?

7

Coursework and Grading

7 programming assignments.  45%

! Due 11:55pm, starting Monday 9/25.

! Available via course website.

Weekly written exercises.  15%

! Due at beginning of Thursday lecture, starting 9/21.

! Available via course website.

Exams.

! Closed book with cheatsheet.

! Midterm.   15%

! Final.         25%

Staff discretion.  Adjust borderline cases.

8

Course Materials

Course web page.   http://www.princeton.edu/~cos226

! Syllabus.

! Exercises.

! Lecture slides.

! Programming assignments.

Algorithms in Java, 3rd edition.

! Parts 1-4.  [sorting, searching]

! Part 5.  [graph algorithms]

Algorithms in C, 2nd edition.

! Strings and geometry handouts.



Robert Sedgewick and Kevin Wayne   •   Copyright © 2005   •   http://www.Princeton.EDU/~cos226

Union Find

Reference:  Chapter 1, Algorithms in Java, 3rd Edition, Robert Sedgewick.

22

Network Connectivity

  in     out    evidence

  3 4    3 4

  4 9    4 9

  8 0    8 0

  2 3    2 3

  5 6    5 6

  2 9           (2–3–4-9)

  5 9    5 9

  7 3    7 3

  4 8    4 8

  5 6           (5-6)

  0 2           (2–3-4–8-0)

  6 1    6 1

0 7

2 3

8

4

6 5 9

1

23

Network Connectivity

25

Union-Find Abstraction

What are critical operations we need to support?

! Objects.

! Disjoint sets of objects.

! Find:  are objects 2 and 9 in the same set?

! Union:  merge sets containing 3 and 8.

0  1  2-3-9  5-6  7  4-8

0  1  2-3-4-8-9  7

0  1  2-3-9  5-6  7  4-8

add a connection between
two grid points

subsets of connected grid points

are two grid points connected?

0  1  2  3  4  5  6  7  8  9 grid points



26

Union-Find Abstraction

What are critical operations we need to support?

! Objects.

! Disjoint sets of objects.

! Find:  are two objects in the same set?

! Union:  replace sets containing two items by their union.

Goal.  Design efficient data structure for union and find.

! Number of operations M can be huge.

! Number of objects N can be huge.

27

Objects

Applications involve manipulating objects of all types.

! Variable name aliases.

! Pixels in a digital photo.

! Computers in a network.

! Web pages on the Internet.

! Transistors in a computer chip.

! Metallic sites in a composite system.

When programming, convenient to name them 0 to N-1.

! Details not relevant to union-find.

! Integers allow quick-access to object-related info.

array indices

29

Quick-Find  [eager approach]

Data structure.

! Integer array id[] of size N.

! Interpretation:  p and q are connected if they have the same id.

Find.  Check if p and q have the same id.

Union.  To merge components containing p and q,

change all entries with id[p] to id[q].

  i   0  1  2  3  4  5  6  7  8  9

id[i] 0  1  9  9  9  6  6  7  8  9

5 and 6 are connected
2, 3, 4, and 9 are connected

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

  i   0  1  2  3  4  5  6  7  8  9

id[i] 0  1  6  6  6  6  6  7  8  6

id[3] = 9; id[6] = 6
3 and 6 not connected

many values can change

30

Quick-Find:  Example

3-4  0 1 2 4 4 5 6 7 8 9

4-9  0 1 2 9 9 5 6 7 8 9

8-0  0 1 2 9 9 5 6 7 0 9

2-3  0 1 9 9 9 5 6 7 0 9

5-6  0 1 9 9 9 6 6 7 0 9

5-9  0 1 9 9 9 9 9 7 0 9

7-3  0 1 9 9 9 9 9 9 0 9

4-8  0 1 0 0 0 0 0 0 0 0

6-1  1 1 1 1 1 1 1 1 1 1



31

Quick-Find:  Java Implementation

1 operation

N operations

set id of each
object to itself

public class QuickFind {

   private int[] id;

   public QuickFind(int N) {

      id = new int[N];

      for (int i = 0; i < N; i++)

         id[i] = i;

   }

   public boolean find(int p, int q) {

      return id[p] == id[q];

   }

   public void unite(int p, int q) {

      int pid = id[p];

      for (int i = 0; i < id.length; i++)

         if (id[i] == pid) id[i] = id[q];

   }

}

32

Problem Size and Computation Time

Rough standard for 2000.

! 109 operations per second.

! 109 words of main memory.

! Touch all words in approximately 1 second.  [unchanged since 1950!]

Ex.  Huge problem for quick find.

! 1010 edges connecting 109 nodes.

! Quick-find might take 1020 operations.   [~10 ops per query]

! 3,000 years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

! New computer may be 10x as fast.

! But, has 10x as much memory so problem may be 10x bigger.

! With quadratic algorithm, takes 10x as long!

34

Quick-Union  [lazy approach]

Data structure.

! Integer array id[] of size N.

! Interpretation:  id[i] is parent of i.

! Root of i  is  id[id[id[...id[i]...]]].

Find.  Check if p and q have the same root.

Union.  Set the id of q's root to the id of p's root.

keep going until it doesn't change

  i   0  1  2  3  4  5  6  7  8  9

id[i] 0  1  9  4  9  6  6  7  8  9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6
3 and 5 are not connected 

  i   0  1  2  3  4  5  6  7  8  9

id[i] 0  1  9  4  9  6  9  7  8  9

4

7

3 5

0 1 9

6

8

2

only one value changes
p q

35

Quick-Union:  Example

3-4  0 1 2 4 4 5 6 7 8 9

4-9  0 1 2 4 9 5 6 7 8 9

8-0  0 1 2 4 9 5 6 7 0 9

2-3  0 1 9 4 9 5 6 7 0 9

5-6  0 1 9 4 9 6 6 7 0 9

5-9  0 1 9 4 9 6 9 7 0 9

7-3  0 1 9 4 9 6 9 9 0 9

4-8  0 1 9 4 9 6 9 9 0 0

6-1  1 1 9 4 9 6 9 9 0 0



36

Quick-Union:  Java Implementation

time proportional
to depth of p and q

time proportional
to depth of p and q

public class QuickUnion {

   private int[] id;

   public QuickUnion(int N) {

      id = new int[N];

      for (int i = 0; i < N; i++) id[i] = i;

   }

   private int root(int i) {

      while (i != id[i]) i = id[i];

      return i;

   }

   public boolean find(int p, int q) {

      return root(p) == root(q);

   }

   public void unite(int p, int q) {

      int i = root(p);

      int j = root(q);

      id[i] = j;

   }

}

time proportional
to depth of x

37

Summary

Quick-find defect.

! Union too expensive.

! Trees are flat, but too expensive to keep them flat.

Quick-union defect.

! Finding the root can be expensive.

! Trees can get tall.

N

Union

tree height

Quick-find

Data Structure

Quick-union

1

Find

N

38

Weighted Quick-Union

Weighted quick-union.

! Modify quick-union to avoid tall trees.

! Keep track of size of each component.

! Balance by linking small tree below large one.

Ex.  Union of 5 and 3.

! Quick union:  link 9 to 6.

! Weighted quick union:  link 6 to 9.

4

7

3

5

0 1 9 6 8

2

p

q

4 211 1 1size

39

Weighted Quick-Union:  Example

3-4  0 1 2 3 3 5 6 7 8 9

4-9  0 1 2 3 3 5 6 7 8 3

8-0  8 1 2 3 3 5 6 7 8 3

2-3  8 1 3 3 3 5 6 7 8 3

5-6  8 1 3 3 3 5 5 7 8 3

5-9  8 1 3 3 3 3 5 7 8 3

7-3  8 1 3 3 3 3 5 3 8 3

4-8  8 1 3 3 3 3 5 3 3 3

6-1  8 3 3 3 3 3 5 3 3 3



40

Weighted Quick-Union:  Java Implementation

Java implementation.

! Almost identical to quick-union.

! Maintain extra array sz[] to count number of elements

in the tree rooted at i.

Find.  Identical to quick-union.

Union.  Same as quick-union, but merge smaller tree into larger tree,

and update the sz[] array.

if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }

else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }

41

Weighted Quick-Union:  Analysis

Analysis.

! Find:  takes time proportional to depth of p and q.

! Union:  takes constant time, given roots.

! Fact:  depth is at most lg N.  [needs proof]

Stop at guaranteed acceptable performance?  No, can improve further.

Quick-find

Data Structure

N

Union

Quick-union 1 †

lg NWeighted QU

1

Find

N

lg N

42

Path compression.  Just after computing the root of i,

set the id of each examined node to root(i).

Path Compression

0

1 23

54

6

78

9

1110

0

1 2

3 54

6 7

8 9

1110

root(9)

43

Weighted Quick-Union with Path Compression

Path compression.

! Standard implementation:  add second loop to root() to set

the id of each examined node to the root.

! Simpler one-pass variant:  make every other node in path

point to its grandparent.

In practice.  No reason not to!  Keeps tree almost completely flat.

public int root(int i) {

   while (i != id[i]) {

      id[i] = id[id[i]];

      i = id[i];

   }

   return i;

}

only one extra line of code !



44

Weighted Quick-Union with Path Compression

3-4  0 1 2 3 3 5 6 7 8 9

4-9  0 1 2 3 3 5 6 7 8 3

8-0  8 1 2 3 3 5 6 7 8 3

2-3  8 1 3 3 3 5 6 7 8 3

5-6  8 1 3 3 3 5 5 7 8 3

5-9  8 1 3 3 3 3 5 7 8 3

7-3  8 1 3 3 3 3 5 3 8 3

4-8  8 1 3 3 3 3 5 3 3 3

6-1  8 3 3 3 3 3 3 3 3 3

45

2

N

16

65536

265536

1

lg* N

3

4

5

4 2

Weighted Quick-Union with Path Compression

Theorem.  Starting from an empty data structure,

any sequence of M union and find operations

on N elements takes O(N + M lg* N) time.

! Proof is very difficult.

! But the algorithm is still simple!

Remark.  lg* N is a constant in this universe.

Linear algorithm?

! Cost within constant factor of reading in the data.

! Theory:  WQUPC is not quite linear.

! Practice:  WQUPC is linear.

46

Context

Ex.  Huge practical problem.

! 1010 edges connecting 109 nodes.

! WQUPC reduces time from 3,000 years to 1 minute.

! Supercomputer won't help much.

! Good algorithm makes solution possible.

Bottom line.  WQUPC on Java cell phone beats QF on supercomputer!

Quick-find

Algorithm

Weighted QU

Path compression

M N

Time

N + M log N

N + M log N

Quick-union M N

Weighted + path 5 (M + N)

M union-find ops on a set of N elements

Robert Sedgewick and Kevin Wayne   •   Copyright © 2005   •   http://www.Princeton.EDU/~cos226

Applications



48

Other Applications

Union-find applications.

! Hex.

! Percolation.

! Connectivity.

! Image processing.

! Least common ancestor.

! Equivalence of finite state automata.

! Hinley-Milner polymorphic type inference.

! Kruskal's minimum spanning tree algorithm.

! Compiling equivalence statements in Fortran.

49

Percolation phase-transition.

! Two parallel conducting bars (top and bottom).

! Electricity flows from a site to one of its 4 neighbors

if both are occupied by conductors.

! Model:  each site is a conductor with probability p.

Percolation

0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9

14 15 16 16 16 16 20 21

14 14 28 29 30 31 32 33

14 39 40 1 42 43 32 45

50 1 52 1 54 55 56 57

1 1 1 1 1 1 1 1

0 0 0 0

10 11 12 0

22 23 24 0

34 35 36 0

46 1 1 49

58 1 1 1

1 1 1 1 insulator

conductor

top

bottom

7

0 0 0 0

0

50

Q.  What is percolation threshold p* at which charge carriers can

percolate from top to bottom?

A.  ~ 0.592746 for square lattices.

Percolation

percolation constant only known via simulation

0 0 0 0 0 0 0 0

2 3 4 5 6 0 8 9

14 15 0 0 0 0 20 21

14 14 28 29 30 31 32 33

14 39 40 1 42 43 32 45

50 1 52 1 54 55 56 57

1 1 1 1 1 1 1 1

0 0 0 0

10 11 12 0

22 23 24 0

34 35 36 0

46 1 1 49

58 1 1 1

1 1 1 1 insulator

conductor

top

bottom

51

Hex

Hex.  [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

! Two players alternate in picking a cell in a hex grid.

! Black:  make a black path from upper left to lower right.

! White:  make a white path from lower left to upper right.

Goal.  Algorithm to detect when a player has won.

Reference:  http://mathworld.wolfram.com/GameofHex.html



52

Summary

Lessons.

! Start with simple, brute force approach.

– don't use for large problems

– can't use for huge problems

! Strive for worst-case performance guarantees.

! Identify fundamental abstractions:  union-find.

! Apply to many domains.

might be nontrivial to analyze


