Undirected Graphs

Reference: Chapter 17-18, Algorithms in Java, 3rd Edition, Robert Sedgewick

Robert Sedgewick and Kevin Wayne • Copyright $\odot 2006$ • http://www.Princeeton.EDU/~cos226

Graph Applications

Graph	Vertices	Edges
communication	telephones, computers	fiber optic cables
circuits	gates, registers, processors	wires
mechanical	joints	rods, beams, springs
hydraulic	reservoirs, pumping stations	pipelines

Graph. Set of objects with pairwise connections.
Why study graph algorithms?

- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

September 11 Hijackers and Associates

Power Transmission Grid of Western US

Graph Terminology

Protein Interaction Network

Reference: Jeong et al, Nature Review \mid Genetics

Some Graph Problems

Path. Is there a path between s to t?
Shortest path. What is the shortest path between s and t? Longest path. What is the longest simple path between s and t ?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once? Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges? Isomorphism. Do two adjacency matrices represent the same graph?

Vertex representation.

- This lecture: use integers between 0 and $\mathrm{v}-1$.
- Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

Set of edge representation. Store list of edges.

$0-1$
$0-6$
$0-2$
$11-12$
$9-12$
$9-11$
$9-10$
$4-3$
$5-3$
$7-8$
$5-4$
$0-5$
$6-4$
public class Graph (graph data type)

Graph(int V)	create an empty graph with \vee vertices
Graph(int V, int E)	create a random graph with V vertices, E edges
d insert (int v , int w)	add an edge v -w
> adj(int v)	return an iterator over the neighbors of v
$t \mathrm{~V}$ ()	return number of vertices
g toString()	return a string representation

> Graph G = new Graph (V, E) ; System.out.println (G) ;
> for (int $v=0 ; v<G \cdot V() ;$ v++)
> for (int $w: G . \operatorname{adj}(v))$ $\quad / /$ edge $v-w$
iterate through all edges (in each direction)

Adjacency Matrix Representation

Adjacency matrix representation.

- Two-dimensional $\mathrm{v} \times \mathrm{v}$ boolean array.
- Edge v-w in graph: adj[v][w] = adj[w][v] = true.

$\begin{array}{lllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllllll}0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array} 0$
$\left.\begin{array}{llllllllllll}1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

4000001001110000000
51110011000000000 6110001000000000 0000000010000 8000000000100000
9 00000000000000111

10	0	0	0	0	0	0	0	0	1	1	0	0	0
11	0	0	0	0	0	0	0	0	0	1	0	0	1

| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

```
public class Graph
    private int V;
                // number of vertices
    // empty graph with V vertices
    public Graph(int V) {
        this.v = v;
        this.adj = new boolean[V][V];
    }
    // insert edge v-w, no parallel edges
    public void insert(int v, int w) {
        adj[v][w] = true;
        adj[w][v] = true;
    }
    // return iterator for neighbors of v
    public Iterable<Integer> adj(int v) {
        return new AdjIterator(v);
    }
}
    private boolean[][] adj; // adjacency matrix
```

\}

```
private class AdjIterator implements Iterator<Integer>
Iterable<Integer> {
    int v, w = 0;
    AdjIterator(int v) { this.v = v; }
    public boolean hasNext() {
        while (w < V) {
            if (adj[v][w]) return true;
            w++;
        }
        return false;
    }
    public int next() {
        if (!hasNext()) throw new NoSuchElementException();
        return w++;
    }
    public Iterator<Integer> iterator() { return this; }
```

\}

Adjacency list.

- Vertex indexed array of lists.
- Two representations of each undirected edge.

Adjacency List Representation: Java Implementation

```
public class Graph {
    private int V;
    private Sequence<Integer>[] adj; // adjacency lists
    public Graph(int V) {
        this.v = v;
            adj = (Sequence<Integer>[]) new Sequence[V];
            dj = (Sequence<Integer>[])
            adj[v] = new Sequence<Integer>();
    }
    // insert v-w, parallel edges allowed
    public void insert(int v, int w) {
            adj[v].add(w);
            adj[w] .add(v) ;
        }
        public Iterable<Integer> adj(int v) {
            return adj[v];
        }
```

\}

Graphs are abstract mathematical objects.

- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.

Representation	Space	Edge between v and w?	Iterate over edges incident to v?
List of edges	E	E	E
Adjacency matrix	V 2	1	V
Adjacency list	E + V	degree(v)	degree(v)

Graphs in practice. [use adjacency list representation]

- Real world graphs are sparse.
- Bottleneck is iterating over edges incident to v.

Maze Exploration
Trémaux Maze Exploration

Trémaux maze exploration.

- Unroll a ball of string behind you.
- Mark each visited intersection by turning on a light.
- Mark each visited passage by opening a door.

History. Theseus entered labyrinth to kill the monstrous Minotaur; Ariadne held ball of string.

Graph Processing Client

Goal. Find all vertices connected to s. \square

Depth First Search

DFS (to visit a vertex v)
Mark v as visited.

Visit all unmarked vertices w adjacent to v .

Running time. $O(E)$ since each edge examined at most twice.

Typical client program

- Create a Graph.
- Pass the Graph to a graph processing routine, e.g., DFSearcher.
- Query the graph processing routine for information.

```
public static void main(String[] args)
    int V = Integer.parseInt(args[0])
    int E = Integer.parseInt(args[1])
    Graph G = new Graph(V, E)
    int s =
    DFSearcher dfs = new DFSearcher (G, s)
    for (int v = 0; v < G.V(); v++
            (dfs.isReachable(v))
                System.out. println(v)
}
```

find and print all vertices reachable from s

Design pattern. Decouple graph from graph algorithms.

```
public class DFSearcher {
    private boolean[] marked;
    public DFSearcher(Graph G, int s) {
        marked = new boolean[G.V()]
        dfs (G, s);
    }
    // depth first search from v
        private void dfs(Graph G, int v) {
        marked[v] = true
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w)
    }
    public boolean isReachable(int v) {
        return marked[v]
    }
}
```


Paths

Path. Is there a path from s to t? If so, find one.

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Vertex: pixel.
- Edge: between two adjacent lime pixels
- Blob: all pixels reachable from chosen lime pixel.

Paths

Path. Is there a path from s to t? If so, find one.

Method	Preprocess Time	Query Time	Space
Union Find	E log* $V+$	$\log ^{\star} V^{\dagger}$	V
DFS	$E+V$	1	$V+E$

\dagger amortized

UF advantage. Can intermix query and edge insertion.
DFS advantage. Can recover path itself in same running time.

DFS tree. Upon visiting a vertex v for the first time, remember from where you came pred [v].

๑

Retrace path. To find path between s and v, follow pred[] values back from v .

32

```
```

public class DFSearcher {

```
```

public class DFSearcher {
// initialize pred[v] to -1 for all v
// initialize pred[v] to -1 for all v
private void dfs (Graph G, int v) {
private void dfs (Graph G, int v) {
marked[v] = true;
marked[v] = true;
for (int w : G.adj(v))
for (int w : G.adj(v))
if (!marked[w]) {
if (!marked[w]) {
pred[w] = v;
pred[w] = v;
dfs(G, w);
dfs(G, w);
}
}
}
}
// return path from s to v
// return path from s to v
public Iterable<Integer> path(int v) {
public Iterable<Integer> path(int v) {
Stack<Integer> list = new Stack<Integer>();
Stack<Integer> list = new Stack<Integer>();
while (v != -1 \&\& marked[v]) {
while (v != -1 \&\& marked[v]) {
list.push(v);
list.push(v);
v = pred[v];
v = pred[v];
}
}
return list;
return list;
}

```
    }
```

}

```

DFS Summary

Enables direct solution of simple graph problems.
- Find path between s to \(t\).
- Connected components.
- Euler tour.
- Cycle detection.

Bipartiteness checking.
Basis for solving more difficulty graph problems.
- Biconnected components.
- Planarity testing.

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from sto that uses fewest number of edges.

> BFS (from source vertex s)

\section*{Put s onto a FIFO queue.}

Repeat until the queue is empty:
- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue, and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

\section*{Breadth First Search}

BFS Application

\section*{BFS applications.}
- Facebook.
- Kevin Bacon numbers.
- Fewest number of hops in a communication network.
private void bfs (Graph G, int s) \{
Queue<Integer> \(q=\) new Queue<Integer>();
q. enqueue (s) ;
while (!q.isEmpty()) \{
int \(v=q\).dequeue ()
for (int w: G.adj(v)) \{
if (dist[w] == INFINITY) \{ q.enqueue (w) ; dist[w] = dist[v] + 1;
\}

\section*{\}}
\}
\}
}
```

```
public class BFSearcher {
```

public class BFSearcher {
private static int INFINITY = Integer.MAX_VALUE;
private static int INFINITY = Integer.MAX_VALUE;
private int[] dist;
private int[] dist;
public BFSearcher(Graph G, int s) {
public BFSearcher(Graph G, int s) {
dist = new int[G.V()];
dist = new int[G.V()];
for (int v = 0; v < G.v(); v++) dist[v] = INFINITY;
for (int v = 0; v < G.v(); v++) dist[v] = INFINITY;
dist[s] = 0;
dist[s] = 0;
bfs(G, s);
bfs(G, s);
}
}
public int distance(int v) { return dist[v];
public int distance(int v) { return dist[v];
private void bfs(Graph G, int s) { // NEXT SLIDE }

```
    private void bfs(Graph G, int s) { // NEXT SLIDE }
```


Connected Components

Connectivity Queries

Def. Vertices vand w are connected if there is a path between them. Property. Symmetric and transitive.

Goal. Preprocess graph to answer queries: is v connected to w?

Vertex	Component
A	0
B	1
C	1
D	0
E	0
F	0
G	2
H	0
I	2
J	1
K	0
L	0
M	1

[^0]Def. Vertices v and w are connected if there is a path between them. Property. Symmetric and transitive.

Goal. Preprocess graph to answer queries: is v connected to w? Brute force. Run DFS from each vertex v: quadratic time and space.

(6)-(I)

Goal. Partition vertices into connected components.

Connected components
Initialize all vertices v as unmarked.
For each unmarked vertex v, run DFS and identify all vertices discovered as part of the same connected component.

Preprocess Time	Query Time	Space
$E+V$	1	V

```
public class CCFinder {
    private int components;
    private int[] cc;
    public CCFinder(Graph G) { unmarked
        cc = new int[G.V()]
        for (int v = 0; v < G.V(); v++) cc[v] = -1.
        for (int v = 0; v < G.V(); v++)
            if (cc[v] == -1) { dfs(G, v); components++; }
    }
    // depth first search from v
    private void dfs(Graph G, int v) {
        cc[v] = components;
        for (int w : G.adj(v)
            if (cc[w] == -1) dfs(G, w);
    }
    public int connected(int v, int w) { return cc[v] == cc[w]; }
    public int connected(int v, int w) { return
```

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

original

labeled

Connected Components

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

Efficient algorithm.

- Connect each pixel to neighboring pixel if same color
- Find connected components in resulting graph.

Connected Components Application: Particle Detection

Particle detection. Given grayscale image of particles, identify "blobs."

- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value ≥ 70

Blob: connected component of 20-30 pixels.
ack $=0$
ite $=255$

Particle tracking. Track moving particles over time.

[^0]: Connected component. Maximal set of mutually connected vertices.

