
Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Undirected Graphs

Reference: Chapter 17-18, Algorithms in Java, 3rd Edition, Robert Sedgewick

2

Undirected Graphs

Graph. Set of objects with pairwise connections.

Why study graph algorithms?

! Interesting and broadly useful abstraction.

! Challenging branch of computer science and discrete math.

! Hundreds of graph algorithms known.

! Thousands of practical applications.

3

Graph Applications

communication

Graph

telephones, computers

Vertices Edges

fiber optic cables

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

scheduling tasks precedence constraints

software systems functions function calls

internet web pages hyperlinks

games board positions legal moves

social relationship people, actors friendships, movie casts

neural networks neurons synapses

protein networks proteins protein-protein interactions

chemical compounds molecules bonds

4

September 11 Hijackers and Associates

Reference: Valdis Krebs
http://www.firstmonday.org/issues/issue7_4/krebs

5

Power Transmission Grid of Western US

Reference: Duncan Watts

6

Protein Interaction Network

Reference: Jeong et al, Nature Review | Genetics

8

Graph Terminology

9

Some Graph Problems

Path. Is there a path between s to t?

Shortest path. What is the shortest path between s and t?

Longest path. What is the longest simple path between s and t?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

Isomorphism. Do two adjacency matrices represent the same graph?

10

Graph Representation

Vertex representation.

! This lecture: use integers between 0 and V-1.

! Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

A

G

E

CB

F

D

0

6

4

21

5

3

symbol table

11

Graph API

Graph G = new Graph(V, E);
System.out.println(G);
for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 // edge v-w

iterate through all edges (in each direction)

create an empty graph with V verticesGraph(int V)

public class Graph (graph data type)

create a random graph with V vertices, E edgesGraph(int V, int E)

add an edge v-winsert(int v, int w)void

return an iterator over the neighbors of vadj(int v)Iterable<Integer>

return number of verticesV()int

return a string representationtoString()String

12

0-1
0-6
0-2
11-12
9-12
9-11
9-10
4-3
5-3
7-8
5-4
0-5
6-4

Set of Edge Representation

Set of edge representation. Store list of edges.

0

6

4

21

5

3

7 12

109

118

13

Adjacency Matrix Representation

Adjacency matrix representation.

! Two-dimensional V ! V boolean array.

! Edge v-w in graph: adj[v][w] = adj[w][v] = true.

 0 0 1 1 0 0 1 1 0 0 0 0 0 0
 1 1 0 0 0 0 1 1 0 0 0 0 0 0
 2 1 0 0 0 0 0 0 0 0 0 0 0 0
 3 0 0 0 0 1 1 0 0 0 0 0 0 0
 4 0 0 0 1 0 1 1 0 0 0 0 0 0
 5 1 1 0 1 1 0 0 0 0 0 0 0 0
 6 1 1 0 0 1 0 0 0 0 0 0 0 0
 7 0 0 0 0 0 0 0 0 1 0 0 0 0
 8 0 0 0 0 0 0 0 1 0 0 0 0 0
 9 0 0 0 0 0 0 0 0 0 0 1 1 1
10 0 0 0 0 0 0 0 0 0 1 0 0 0
11 0 0 0 0 0 0 0 0 0 1 0 0 1
12 0 0 0 0 0 0 0 0 0 1 0 1 0

0

6

4

21

5

3

7 12

109

118

0 1 2 3 4 5 6 7 8 9 10 11 12

14

Adjacency Matrix Representation: Java Implementation

public class Graph {
 private int V; // number of vertices
 private boolean[][] adj; // adjacency matrix

 // empty graph with V vertices
 public Graph(int V) {
 this.V = V;
 this.adj = new boolean[V][V];
 }

 // insert edge v-w, no parallel edges
 public void insert(int v, int w) {
 adj[v][w] = true;
 adj[w][v] = true;
 }

 // return iterator for neighbors of v
 public Iterable<Integer> adj(int v) {
 return new AdjIterator(v);
 }
}

15

Adjacency Matrix Iterator

private class AdjIterator implements Iterator<Integer>,
 Iterable<Integer> {

 int v, w = 0;
 AdjIterator(int v) { this.v = v; }

 public boolean hasNext() {
 while (w < V) {
 if (adj[v][w]) return true;
 w++;
 }
 return false;
 }

 public int next() {
 if (!hasNext()) throw new NoSuchElementException();
 return w++;
 }

 public Iterator<Integer> iterator() { return this; }

}

does v have another neighbor w?

16

Adjacency List Representation

Adjacency list.

! Vertex indexed array of lists.

! Two representations of each undirected edge.

0: 5 2 1 6

1: 0

2: 0

3: 5 4

4: 6 5 3

5: 0 4 3

6: 4 0

7: 8

8: 7

9: 10 11 12

10: 9

11: 9 12

12: 9 11

0

6

4

21

5

3

7 12

109

118

17

Adjacency List Representation: Java Implementation

public class Graph {
 private int V; // # vertices
 private Sequence<Integer>[] adj; // adjacency lists

 public Graph(int V) {
 this.V = V;
 adj = (Sequence<Integer>[]) new Sequence[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Sequence<Integer>();
 }

 // insert v-w, parallel edges allowed
 public void insert(int v, int w) {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v) {
 return adj[v];
 }
}

18

Graph Representations

Graphs are abstract mathematical objects.

! ADT implementation requires specific representation.

! Efficiency depends on matching algorithms to representations.

Graphs in practice. [use adjacency list representation]

! Real world graphs are sparse.

! Bottleneck is iterating over edges incident to v.

Representation Space

Adjacency matrix V 2

Adjacency list E + V

Edge between
v and w?

1

degree(v)

Iterate over edges
incident to v?

V

degree(v)

List of edges E E E

19

Maze Exploration

Claude Shannon (with Theseus mouse)

20

Maze Exploration

Maze graphs.

! Vertex = intersections.

! Edge = passage.

Goal. Explore every passage in the maze.

21

Trémaux Maze Exploration

Trémaux maze exploration.

! Unroll a ball of string behind you.

! Mark each visited intersection by turning on a light.

! Mark each visited passage by opening a door.

History. Theseus entered labyrinth to kill the monstrous Minotaur;

Ariadne held ball of string.

22 23

Maze Exploration

24

Goal. Find all vertices connected to s.

Running time. O(E) since each edge

examined at most twice.

Depth First Search

Mark v as visited.

Visit all unmarked vertices w adjacent to v.

DFS (to visit a vertex v)

25

Typical client program.

! Create a Graph.

! Pass the Graph to a graph processing routine, e.g., DFSearcher.

! Query the graph processing routine for information.

Design pattern. Decouple graph from graph algorithms.

Graph Processing Client

public static void main(String[] args) {
 int V = Integer.parseInt(args[0]);
 int E = Integer.parseInt(args[1]);
 Graph G = new Graph(V, E);
 int s = 0;
 DFSearcher dfs = new DFSearcher(G, s);
 for (int v = 0; v < G.V(); v++)
 if (dfs.isReachable(v))
 System.out.println(v);
}

find and print all vertices reachable from s

26

Depth First Search

public class DFSearcher {
 private boolean[] marked;

 public DFSearcher(Graph G, int s) {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 // depth first search from v
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean isReachable(int v) {
 return marked[v];
 }
}

27

Reachability Application: Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire

blob of neighboring lime pixels to blue.

! Vertex: pixel.

! Edge: between two adjacent lime pixels.

! Blob: all pixels reachable from chosen lime pixel.
recolor lime green blob to blue

29

Paths

Path. Is there a path from s to t? If so, find one.

31

Paths

Path. Is there a path from s to t? If so, find one.

UF advantage. Can intermix query and edge insertion.

DFS advantage. Can recover path itself in same running time.

Method Preprocess Time

Union Find E log* V †

DFS E + V

Query Time

 log* V †

1

Space

V

V + E

† amortized

32

Keep Track of Path

DFS tree. Upon visiting a vertex v for

the first time, remember from where

you came pred[v].

Retrace path. To find path between

s and v, follow pred[] values back from v.

33

Find Path

public class DFSearcher {
 // initialize pred[v] to -1 for all v

 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) {
 pred[w] = v;
 dfs(G, w);
 }
 }

 // return path from s to v
 public Iterable<Integer> path(int v) {
 Stack<Integer> list = new Stack<Integer>();
 while (v != -1 && marked[v]) {
 list.push(v);
 v = pred[v];
 }
 return list;
 }
}

34

DFS Summary

Enables direct solution of simple graph problems.

! Find path between s to t.

! Connected components.

! Euler tour.

! Cycle detection.

! Bipartiteness checking.

Basis for solving more difficulty graph problems.

! Biconnected components.

! Planarity testing.

35

Shortest Path

36

Breadth First Search

Depth-first search. Put unvisited vertices on a stack.

Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

Property. BFS examines vertices in increasing distance from s.

Put s onto a FIFO queue.

Repeat until the queue is empty:

! remove the least recently added vertex v

! add each of v's unvisited neighbors to the queue,

 and mark them as visited.

BFS (from source vertex s)

37

Breadth First Search

public class BFSearcher {
 private static int INFINITY = Integer.MAX_VALUE;

 private int[] dist;

 public BFSearcher(Graph G, int s) {
 dist = new int[G.V()];
 for (int v = 0; v < G.V(); v++) dist[v] = INFINITY;
 dist[s] = 0;
 bfs(G, s);
 }

 public int distance(int v) { return dist[v]; }
 private void bfs(Graph G, int s) { // NEXT SLIDE }
}

38

Breadth First Search

// breadth-first search from s
private void bfs(Graph G, int s) {
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 while (!q.isEmpty()) {
 int v = q.dequeue();
 for (int w : G.adj(v)) {
 if (dist[w] == INFINITY) {
 q.enqueue(w);
 dist[w] = dist[v] + 1;
 }
 }
 }
}

39

BFS Application

BFS applications.

! Facebook.

! Kevin Bacon numbers.

! Fewest number of hops in a communication network.

ARPANET

40

Connected Components

41

Connectivity Queries

Def. Vertices v and w are connected if there is a path between them.

Property. Symmetric and transitive.

Goal. Preprocess graph to answer queries: is v connected to w?

Brute force. Run DFS from each vertex v: quadratic time and space.

H

A

K

EL

F

D

G

M

CJ

B

I

Vertex Component
 A 0
 B 1
 C 1
 D 0
 E 0
 F 0
 G 2
 H 0
 I 2
 J 1
 K 0
 L 0
 M 1

42

Connectivity Queries

Def. Vertices v and w are connected if there is a path between them.

Property. Symmetric and transitive.

Goal. Preprocess graph to answer queries: is v connected to w?

Connected component. Maximal set of mutually connected vertices.

H

A

K

EL

F

D

G

M

CJ

B

I

Vertex Component
 A 0
 B 1
 C 1
 D 0
 E 0
 F 0
 G 2
 H 0
 I 2
 J 1
 K 0
 L 0
 M 1

43

Goal. Partition vertices into connected components.

Connected Components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS and identify all vertices

discovered as part of the same connected component.

Connected components

Preprocess Time

E + V

Query Time

1

Space

V

44

Depth First Search: Connected Components

public class CCFinder {
 private int components;
 private int[] cc;

 public CCFinder(Graph G) {
 cc = new int[G.V()];
 for (int v = 0; v < G.V(); v++) cc[v] = -1;
 for (int v = 0; v < G.V(); v++)
 if (cc[v] == -1) { dfs(G, v); components++; }
 }

 // depth first search from v
 private void dfs(Graph G, int v) {
 cc[v] = components;
 for (int w : G.adj(v))
 if (cc[w] == -1) dfs(G, w);
 }

 public int connected(int v, int w) { return cc[v] == cc[w]; }

} are v and w in same connected component?

unmarked

45

Connected Components

63 components

46

Connected Components Application: Image Processing

Goal. Read in a 2D color image and find regions of connected pixels

that have the same color.

original labeled

47

Connected Components Application: Image Processing

Goal. Read in a 2D color image and find regions of connected pixels

that have the same color.

Efficient algorithm.

! Connect each pixel to neighboring pixel if same color.

! Find connected components in resulting graph.

0 1 1 1 1 1 6 6

0 0 0 1 6 6 6 8

3 0 0 1 6 6 4 8

3 0 0 1 1 6 2 11

10 10 10 10 1 1 2 11

7 7 2 2 2 2 2 11

7 7 5 5 5 2 2 11

8 9 9 11

8 11 9 11

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

48

Connected Components Application: Particle Detection

Particle detection. Given grayscale image of particles, identify "blobs."

! Vertex: pixel.

! Edge: between two adjacent pixels with grayscale value " 70.

! Blob: connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.

black = 0
white = 255

