Undirected Graphs

Reference: Chapter 17-18, Algorithms in Java, 3" Edition, Robert Sedgewick

Robert Sedgewick and Kevin Wayne -+ Copyright © 2006 - http://www.Princeton.EDU/~cos226

Graph Applications

communication telephones, computers fiber optic cables
circuits gates, registers, processors wires
mechanical Jjoints rods, beams, springs
hydraulic reservoirs, pumping stations pipelines
financial stocks, currency transactions
transportation street intersections, airports highways, airway routes
scheduling tasks precedence constraints
software systems functions function calls
internet web pages hyperlinks
games board positions legal moves
social relationship people, actors friendships, movie casts
neural networks neurons synapses
protein networks proteins protein-protein interactions
chemical compounds molecules bonds

Undirected Graphs

Graph. Seft of objects with pairwise connections.

Why study graph algorithms?

« Interesting and broadly useful abstraction.

=« Challenging branch of computer science and discrete math.
= Hundreds of graph algorithms known.

= Thousands of practical applications.

September 11 Hijackers and Associates

.
Fou zubsids

=

Jean-tarc Grandvisi

-
Rou walid ¥
Djamal Beghal

n
Hhmed Reszam
. »
Kame Daoudi Jerame Coutsilier
.
Haydar Abu Dona
" "
Mehdi Khammoun Abu Gatada
. Zacarias Mousssoui Dawid Courtaitier
Eszoussi Lasroussi
I .
Mohamed Bensakiria — Tarek Masrouti
. .
Lszed Ben Heri s Eddin Barakst Varkss

Setaiianban Hazsine

e

o
Essid Sami Ban Knemsiz

. =

Farid st shaki Mehammed Balfas

")
Andeighani Meouds B o

- " "
Madjd Sahoune Rous Budinan Mounir €1 Motassadeq

= B Knai i Samie Ausei
Somic sk m . .
st Anmes s isavi Takariys Essabor Hamaun Mahimua ssi
Horamagate Wamoun barkazant
™ Sud oo
Fayes Abmes Y
= Ziad Jarrah
/ail Alshehri -
AL Alshe, Marvvan Al Shehhi
Weieas rsman
. .
Boit peie ALOmart | Lot Reasi -
¥ .
o Suamsugami e wamnawi B .
B R Hanjour Rayed Mohammed Abduan
=
b Suier anazm
Anmed Alohaingt - Faisal Al Salmi
o 7 Wajed Moqed
. Tt siarson,Rarcs Aghamai g
Roed i vt Abazig
ey — p—
Pomaan
) med Alnami
Reference: Valdis Krebs

W sama Awadaliah
Abdussattar Shaikh

http://www.firstmonday.org/issues/issue7_4/krebs

Monamed Abcti

Power Transmission Grid of Western US Protein Interaction Network

Reference: Jeong et al, Nature Review | Genetics
Reference: Duncan Watts

Graph Terminology Some Graph Problems

Path. Is there apath between s to +?
Shortest path. What is the shortest path between s and 1?

vertexﬂ ah Longest path. What is the longest simple path between s and t?
spanning tree—\ P _\v
! Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
cycle —= Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?

tree MST. What is the best way to connect all of the vertices?

edge —» Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Isomorphism. Do two adjacency matrices represent the same graph?

Graph Representation Graph API

Vertex representation.
« This lecture: use integers between 0 and v-1.
« Real world: convert between names and integers with symbol table.

public class Graph (graph data type)

Graph (int V) create an empty graph with V vertices
Graph (int V, int E) create a random graph with V vertices, E edges

void insert(int v, int w) add an edge v-w

° o Iterable<Integer> adj(int v) return an iterator over the neighbors of v
int V() return number of vertices
e e e o e o String toString() return a string representation
symbol table

L L

Graph G = new Graph(V, E);

System.out.println (G) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))

// ed —
Other issues. Parallel edges, self-loops. e

iterate through all edges (in each direction)

Set of Edge Representation Adjacency Matrix Representation

Set of edge representation. Store list of edges. Adjacency matrix representation.
« Two-dimensional v x v boolean array.
« Edge v-win graph: adj(v](w] = adj(w] [v] = true.

o 0 01 2 3 4 5 6 7 8 9 101112

0/0110011000000

0-1 1/1000011000000

© (2 (e) 0-6 @ ©) O 2{/1000000000000

0-2 3/0000110000000

11-12 4/0001011000000

(3) (3} 9-12 ® @ 5/1101100000000

9-11 /1100100000000

9-10 7/0000000010000

G 4-3 5 2{0000000100000

5-3 5|0000000000111

@ ® 7-8 @ © 0[{0000000001000

5-4 12/0000000001001

0-5 12/0000000001010
@ oS @

Adjacency Matrix Representation: Java Implementation Adjacency Matrix Iterator

15

Adjacency List Representation Adjacency List Representation: Java Implementation

Adjacency list.
« Vertex indexed array of lists.
« Two representations of each undirected edge.
10:
11:
H E 12:

© ® 9 o U s W N K O

II'E"IEEﬂ"l

Graph Representations

Graphs are abstract mathematical objects.
« ADT implementation requires specific representation.
. Efficiency depends on matching algorithms to representations.

, Edge between Iterate over edges
E E E

List of edges
Adjacency matrix Ve 1 \
Adjacency list E+V degree(v) degree(v)

Graphs in practice. [use adjacency list representation]
= Real world graphs are sparse.
« Bottleneck is iterating over edges incident to v.

Maze Exploration

Maze graphs.
« Vertex = intersections.
. Edge = passage.

Goal. Explore every passage in the maze.

Maze Exploration

Claude Shannon (with Theseus mouse)

Trémaux Maze Exploration

Trémaux maze exploration.
= Unroll a ball of string behind you.
= Mark each visited intersection by turning on a light.
= Mark each visited passage by opening a door.

History. Theseus entered labyrinth to kill the monstrous Minotaur;
Ariadne held ball of string.

>’y >’y »’y »{) »Iyﬂ

Depth First Search

Goal. Find all vertices connected to s.

DFS (to visit a vertex v)

Mark v as visited.
Visit all unmarked vertices w adjacent o v.

Running time. O(E) since each edge
examined at most twice.

Maze Exploration

[ee

oo oo

Graph Processing Client

Typical client program.
. Create a Graph.
« Pass the craph to a graph processing routine, e.g., DFsearcher.
= Query the graph processing routine for information.

public static void main(String[] args) {
int V = Integer.parselnt(args[0])
int E = Integer.parselnt(args[l])
Graph G = new Graph(V, E);
int s = 0;
DFSearcher dfs = new DFSearcher (G, s);
for (int v = 0; v < G.V(); v++)

if (dfs.isReachable(v))
System.out.println(v) ;

find and print all vertices reachable from s

Design pattern. Decouple graph from graph algorithms.

Depth First Search

public class DFSearcher {
private boolean[] marked;

public DFSearcher (Graph G, int s) {
marked = new boolean[G.V()];
dfs (G, s);

}

// depth first search from v
private void dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs (G, w);
}

public boolean isReachable (int v) {
return marked|[v] ;

}

Paths

Path. Is there a path from s to t? If so, find one.

Reachability Application: Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.

. Vertex: pixel.

« Edge: between two adjacent lime pixels.

= Blob: all pixels reachable from chosen lime pixel.

recolor lime green blob to blue

A e 0o 0 0 0 0
*

fabd L) .

o 4

A A L) ° o

undo| ado

20 L) o o

ot N Ghat | orp

Eotse] — e 0o 0 0 0 0

- Tk | Tin

a7

Paths

Path. Is there a path from s to t? If so, find one.

"

Union Find Elog*V T log* v 1
DFS E+V 1 V+E
1 amortized

UF advantage. Can intermix query and edge insertion.
DFS advantage. Can recover path itself in same running time.

DFS tree. Upon visiting a vertex v for
the first time, remember from where
you came pred[v].

Retfrace path. To find path between
s and v, follow pred(] values back from v.

Keep Track of Path

®e

©20:0]

(0,0,0:0)

DFS Summary

Enables direct solution of simple graph problems.

Find path between s to 1.
Connhected components.
Euler tour.

Cycle detection.
Bipartiteness checking.

Basis for solving more difficulty graph problems.

Biconnected components.
Planarity testing.

@@ (OO
PO 5S4 S400) ©20,0,0:0:0 ©20,020,0)

Find Path

public class DFSearcher {
// initialize pred[v] to -1 for all v

private void dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) {
pred[w] = v;
dfs (G, w);

}

// return path from s to v
public Iterable<Integer> path(int v) {
Stack<Integer> list = new Stack<Integer>() ;
while (v !'= -1 && marked[v]) {
list.push(v) ;
v = pred[v];
}

return list;

Shortest Path

Breadth First Search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue.
Repeat until the queue is empty: @
* remove the least recently added vertex v
= add each of v's unvisited neighbors to the queue,
and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

Breadth First Search

// breadth-first search from s
private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>() ;
g.enqueue (s) ;
while ('q.isEmpty()) {
int v = q.dequeue() ;
for (int w : G.adj(v)) {
if (dist[w] == INFINITY) {
q.enqueue (w) ;
dist[w] = dist[v] + 1;

Breadth First Search

public class BFSearcher {
private static int INFINITY = Integer.MAX VALUE;

private int[] dist;

public BFSearcher (Graph G, int s) {
dist = new int[G.V()];
for (int v = 0; v < G.V(); v++) dist[v] = INFINITY;
dist[s] = 0;
bfs (G, s);
}

public int distance(int v) { return dist[v]; }
private void bfs(Graph G, int s) { // NEXT SLIDE }

BFS Application

BFS applications.
« Facebook.
= Kevin Bacon numbers.
« Fewest number of hops in a communication network.

AREANET LOGICAL MAF, MARCH 1977

ARPANET

Connectivity Queries

COHHCCTed ComponenTS Def. Vertices v and w are connected if there is a path between them.

Property. Symmetric and transitive.

Goal. Preprocess graph to answer queries: is v connected to w?
Brute force. Run DFS from each vertex v: quadratic time and space.

Vertex Component

A 0
@Q—=@ s
c 1
D 0
E 0
®—® P o
G 2
H 0
I 2
@—® 1
K 0
L 0
M 1

Connectivity Queries Connected Components
Def. Vertices vand w are connected if there is a path between them. Goal. Partition vertices into connected components.
Property. Symmetric and transitive.

. . Connected components
Goal. Preprocess graph to answer queries: is v connected to w? nn mponen

Initialize all vertices v as unmarked.
For each unmarked vertex v, run DFS and identify all vertices

Vvertex Component discovered as part of the same connected component.

A 0
@@ s q
(o] 1
D 0
E 0
® W P
G 2
H 0
oo i i
K 0
L 0 E+V 1 v
M 1

Connected component. Maximal set of mutually connected vertices.

Depth First Search: Connected Components Connected Components

public class CCFinder ({
private int components;
private int[] cc;

;

-
P
g

public CCFinder (Graph G) { unmarked
cc = new int[G.V()]; / I_I._.
for (int v = 0; v < G.V(); v++) cclv] = -1;
for (int v = 0; v < G.V(); v++) %]E
if (cc[v] == -1 dfs (G, v); components++;
, (eclv]) { () i } 1l é }
5t

// depth first search from v
private void dfs(Graph G, int v) {
cc[v] = components;

fip

!

o

for (int w : G.adj(v)) 1
if (cc[w] == -1) dfs(G, w); 5 I:r
} ! Lj gs!
public int connected(int v, int w) { return cc[v] == cc[w]; } {
} are v and w in same connected component? .
63 components LI_I EE
44 45
Connected Components Application: Image Processing Connected Components Application: Image Processing
Goal. Read in a 2D color image and find regions of connected pixels Goal. Read in a 2D color image and find regions of connected pixels
that have the same color. that have the same color.

Efficient algorithm.
« Connect each pixel to neighboring pixel if same color.
« Find connected components in resulting graph.

e

CATUHEle

BT Y

original labeled

Connected Components Application: Particle Detection

Particle detection. Given grayscale image of particles, identify "blobs."
« Vertex: pixel.
« Edge: between two adjacent pixels with grayscale value = 70.

= Blob: connected component of 20-30 pixels. \blﬂck: 0

white = 255

Particle tracking. Track moving particles over time.

