
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

String Searching

Reference: Chapter 19, Algorithms in C, 2nd Edition, Robert Sedgewick.

2

String Search

String search. Given a pattern string, find first match in text.

Model. Can't afford to preprocess the text.

Parameters. N = length of text, M = length of pattern.

i n a h a y

Text

s t a c k a n e e d l e i n a

n e e d l e

Pattern

M = 6, N = 21

typically N >> M

3

Applications

Applications.

! Parsers.

! Lexis/Nexis.

! Spam filters.

! Virus scanning.

! Digital libraries.

! Screen scrapers.

! Word processors.

! Web search engines.

! Natural language processing.

! Carnivore surveillance system.

! Computational molecular biology.

! Feature detection in digitized images.

4

Brute Force: Typical Case

h a y n e e d s a n n e e d l e x

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

n e e d l e

5

Brute Force

Brute force. Check for pattern starting at every text position.

public static int search(String pattern, String text) {

 int M = pattern.length();

 int N = text.length();

 for (int i = 0; i < N - M; i++) {

 int j;

 for (j = 0; j < M; j++) {

 if (text.charAt(i+j) != pattern.charAt(j))

 break;

 }

 if (j == M) return i; // return offset i of match

 }

 return -1; // not found

}

6

Brute Force: Worst Case

a a a a a a a a a a a a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

a a a a a b

7

Analysis of Brute Force

Analysis of brute force.

! Running time depends on pattern and text.

! Slow if M and N are large, and have lots of repetition.

Implementation Typical Worst

Brute 1.1 N † M N

† assumes appropriate model

character
comparisons

Search for M-character pattern in N-character text

8

Screen Scraping

Goal. Find current stock price of Google.

http://finance.yahoo.com/q?s=goog

NYSE symbol

9

Screen Scraping

Goal. Find current stock price of Google.

! s.indexOf(t, i): index of first occurrence of pattern t in

string s, starting at offset i.

! Read raw html from http://finance.yahoo.com/q?s=goog.

! Find first string delimited by and after Last Trade.

public class StockQuote {

 public static void main(String[] args) {

 String name = "http://finance.yahoo.com/q?s=";

 In in = new In(name + args[0]);

 String input = in.readAll();

 int start = input.indexOf("Last Trade:", 0);

 int from = input.indexOf("", start);

 int to = input.indexOf("", from);

 String price = input.substring(from + 3, to);

 System.out.println(price);

 }

} % java StockQuote goog

475.90

10

Algorithmic Challenges

Theoretical challenge. Linear-time guarantee.

Practical challenge. Avoid backup.

Now is the time for all people to come to the aid of their party. Now is the time for all good

people to come to the aid of their party. Now is the time for many good people to come to the

aid of their party. Now is the time for all good people to come to the aid of their party. Now

is the time for a lot of good people to come to the aid of their party. Now is the time for

all of the good people to come to the aid of their party. Now is the time for all good people

to come to the aid of their party. Now is the time for each good person to come to the aid of

their party. Now is the time for all good people to come to the aid of their party. Now is the

time for all good Republicans to come to the aid of their party. Now is the time for all good

people to come to the aid of their party. Now is the time for many or all good people to come

to the aid of their party. Now is the time for all good people to come to the aid of their

party. Now is the time for all good Democrats to come to the aid of their party. Now is the

time for all people to come to the aid of their party. Now is the time for all good people to

come to the aid of theirparty. Now is the time for many good people to come to the aid of

their party. Now is the time for all good people to come to the aid of their party. Now is the

time for a lot of good people to come to the aid of their party. Now is the time for all of

the good people to come to the aid of their party.Now is the time for all good people to come

to the aid of their attack at dawn party. Now is the time for each person to come to the aid

of their party. Now is the time for all good people to come to the aid of their party. Now is

the time for all good Republicans to come to the aid of their party. Now is the time for all

good people to come to the aid of their party. Now is the time for many or all good people to

come to the aid of their party. Now is the time for all good people to come to the aid of

their party. Now is the time for all good Democrats to come to the aid of their party.

often no room or time to save text

fundamental algorithmic problem

11

Karp-Rabin

Dick Karp
1985 Turing award

Michael Rabin

12

Karp-Rabin Randomized Fingerprint Algorithm

Idea: use hashing.

! Compute hash function for each text position.

! No explicit hash table: just compare with pattern hash!

Ex. Hash "table" size = 97.

3 1 4 1 5 9

Text

2 6 5 3 5 8 9 7 9 3 2 3 8 4 6

5 9 2 6 5

Pattern

3 1 4 1 5

1 4 1 5 9

4 1 5 9 2

1 5 9 2 6

5 9 2 6 5

59265 % 97 = 95

31415 % 97 = 84

14159 % 97 = 94

41592 % 97 = 76

15926 % 97 = 18

59265 % 97 = 95

13

Computing the Hash Function

Brute force. O(M) arithmetic ops per hash.

Faster method to compute hash of adjacent substrings.

! Use previous hash to compute next hash.

! O(1) time per hash.

Ex.

! Pre-computed: 10000 % 97 = 9

! Previous hash: 41592 % 97 = 76

! Next hash: 15926 % 97 = ??

Observation.
! 15926 % 97 ! (41592 – (4 * 10000)) * 10 + 6

 ! (76 – (4 * 9)) * 10 + 6

! 406

! 18

key property of mod: can mod out any time

except first one

14

public static int search(String p, String t) {

 int M = p.length(), N = t.length();

 int q = 8355967; // table size

 int d = 256; // radix

 int dM = 1; // precompute d^(M-1) % q

 for (int j = 1; j < M; j++)

 dM = (d * dM) % q;

 int h1 = 0, h2 = 0;
 for (int i = 0; i < M; j++) {

 h1 = (h1*d + p.charAt(i)) % q; // hash of pattern

 h2 = (h2*d + t.charAt(i)) % q; // hash of text

 }

 if (h1 == h2) return 0; // match found

 for (int i = M; i < N; i++) {

 h2 = (h2 + d*q - dM*t.charAt(i-M)) % q; // remove leftmost digit

 h2 = (h2*d + t.charAt(i)) % q;M)) % q; // insert rightmost digit

 if (h1 == h2) return i - M + 1; // match found

 }

 return -1; // not found

}

Java Implementation

15

Karp-Rabin: False Matches

False match. Hash of pattern collides with another substring.
! 59265 % 97 = 95

! 59362 % 97 = 95

How to choose modulus p.

! p too small $ many false matches.

! p too large $ too much arithmetic.

! Ex: p = 8355967 $ avoid 32-bit integer overflow.

! Ex: p = 35888607147294757 $ avoid 64-bit integer overflow.

16

Karp-Rabin: Randomized Algorithms

Theorem. If MN " 29 and p is a random prime between 1 and MN2, then

Pr[false match] # 2.53/N.

Randomized algorithm. Choose table size p at random to be huge prime.

Monte Carlo. Don't bother checking for false matches.

! Guaranteed to be fast: O(M + N).

! Expected to be correct (but false match possible).

Las Vegas. Upon hash match, do full compare; if false match, try again

with new random prime.

! Guaranteed to be correct.

! Expected to be fast: O(M + N).

Q. Would either version of Rabin-Karp make a good library function?

relies on prime number theorem

17

String Search Implementation Cost Summary

Karp-Rabin summary.

! Create fingerprint of each substring and compare fingerprints.

! Expected running time is linear.

! Idea generalizes, e.g., to 2D patterns.

Karp-Rabin

Implementation

%(N)

Typical

 %(N) ‡

Worst

Brute 1.1 N † M N

† assumes appropriate model
‡ randomized

character
comparisons

Search for M-character pattern in N-character text

18

Knuth-Morris-Pratt

Don Knuth
1974 Turing award

Vaughan PrattJim Morris

19

Knuth-Morris-Pratt: DFA Simulation

KMP algorithm. [over binary alphabet]

! Build DFA from pattern.

! Run DFA on text.

3 4
a a

5

a
0 1

a a

2

b

b
b

b

b

b

a

a a a b a a

Text

b a a a b

accept state

a a b a a a

a a b a a a

a a b a a a

20

Knuth-Morris-Pratt: DFA Simulation

Interpretation of state i. Length of longest prefix of search pattern

that is a suffix of input string.

Ex. End in state 4 iff text ends in aaba.

Ex. End in state 2 iff text ends in aa (but not aabaa or aabaaa).

3 4
a a

5

a
0 1

a a

2

b

b
b

b

b

b

a

a a b a a a

Pattern

accept state

21

DFA Representation

DFA used in KMP has special property.

! Upon character match in state j, go forward to state j+1.

! Upon character mismatch in state j, go back to state next[j].

b 0

a 1

0 1 2 3 4 5

0

2

3

2

0

4

0

5

3

6

next 0 0 2 0 0 3 only need to
store this row

a a b a a a

Pattern

3 4
a a

5

a
0 1

a a

2

b

b
b

b

b

b

a

accept state

22

KMP Algorithm

Two key differences from brute force.

! Text pointer i never "backs up."

! Need to precompute next[] table.

int j = 0;

for (int i = 0; i < N; i++) {

 if (t.charAt(i) == p.charAt(j)) j++; // match

 else j = next[j]; // mismatch

 if (j == M) return i - M + 1; // found

}

return -1; // not found

Simulation of KMP DFA (assumes binary alphabet)

23

Knuth-Morris-Pratt: DFA Construction

Iterative construction. Suppose you've created DFA for pattern aabaaa.

How to extend to DFA for pattern aabaaab ?

! Easy: transition from state 6 if next char matches.

! Challenge: transition from state 6 if next char mismatches.

Wishful thinking. Simulate aabaaaa on DFA.

Key idea. Simulate aabaaaa on DFA.

3 4
a a

5 6
a

0 1
a a

2
b

b
b

b

b

b
a

a b

24

Knuth-Morris-Pratt: DFA Construction

Iterative construction. Suppose you've created DFA for pattern aabaaa.

How to extend to DFA for pattern aabaaab ?

! Easy: transition from state 6 if next char matches.

! Challenge: transition from state 6 if next char mismatches.

Wishful thinking. Simulate aabaaaa on DFA.

Key idea. Simulate aabaaaa on DFA.

Efficient version. Pre-compute simulation of aabaaa.

3 4
a a

5 6
a

0 1
a a

2
b

b
b

b

b

b
a

b
7

a

25

Knuth-Morris-Pratt: DFA Construction

DFA construction for KMP. DFA builds itself!

State 6. Given DFA for aabaaa and state X of simulating aabaaa,

compute DFA for aabaaab and state X of simulating aabaaab.

! next[6] = X & a = 2.

! Update X = X & b = 3.

3 4
a a

5 6
a

0 1
a a

2
b

b
b

b

b

b
a

b
7

a

X = 2

26

DFA Construction for KMP

DFA construction for KMP. DFA builds itself!

State 7. Given DFA for aabaaab and state X of simulating aabaaab,

compute DFA for aabaaabb and state X of simulating aabaaabb.

! next[7] = X & a = 4.

! Update X = X & b = 0.

3 4
a a

5 6
a

0 1
a a

2
b b

7

b
b

8
b

a
b

b a

b
a

X = 3

27

DFA Construction for KMP: Java Implementation

Build DFA for KMP.

! Takes O(M) time.

! Requires O(M) extra space to store next[] table.

int X = 0;

int[] next = new int[M];

for (int j = 1; j < M; j++) {

 if (p.charAt(X) == p.charAt(j)) { // char match

 next[j] = next[X];

 X = X + 1;

 }

 else { // char mismatch

 next[j] = X + 1;

 X = next[X];

 }

}

DFA Construction for KMP (assumes binary alphabet)

28

Optimized KMP Implementation

Ultimate search program for aabaaabb pattern.

! Specialized C program.

! Machine language version of C program.

int kmpearch(char t[]) {

 int i = 0;

 s0: if (t[i++] != 'a') goto s0;

 s1: if (t[i++] != 'a') goto s0;

 s2: if (t[i++] != 'b') goto s2;

 s3: if (t[i++] != 'a') goto s0;

 s4: if (t[i++] != 'a') goto s0;

 s5: if (t[i++] != 'a') goto s3;

 s6: if (t[i++] != 'b') goto s2;

 s7: if (t[i++] != 'b') goto s4;

 return i - 8;

} next[]

assumes pattern is in text (o/w use sentinel)

pattern[]

29

KMP Over Arbitrary Alphabet

DFA for patterns over arbitrary alphabet '.

! For each character in alphabet, determine next state.

! Lookup table requires O(M |'|) space.

Ex. DFA for pattern ababcb.

2 3 4 50 1
a b a b c b

b

b, c

c

a

a

c

b, c
a

a

can be expensive if ' = Unicode alphabet

c

30

KMP Over Arbitrary Alphabet

NFA for patterns over arbitrary alphabet '.

! Read new character only upon success (or failure at beginning).

! Reuse current character upon failure and follow back.

Ex. NFA for pattern ababcb.

2 3 4 50 1

mismatchmismatch

a b a b c b

mismatch

mismatch

0 & 1 & 2 & 3 & 4 & 2 & 3 & 1 & 0 & 1 & 2 & 3
a b a b a a

mismatch

b a

text = ababaaba

31

String Search Implementation Cost Summary

KMP analysis.

! NFA simulation requires at most 2N comparisons.

– advances # N

– retreats # advances

! NFA construction takes %(M) time and space.

Karp-Rabin

Implementation

KMP

%(N)

Typical

 1.1 N †

 %(N) ‡

Worst

2 N

Brute 1.1 N † M N

character
comparisons

† assumes appropriate model
‡ randomized

Search for M-character pattern in N-character text

32

History of KMP

History of KMP.

! Inspired by esoteric theorem of Cook that says linear time

algorithm should be possible for 2-way pushdown automata.

! Discovered in 1976 independently by two theoreticians and a hacker.

– Knuth: discovered linear time algorithm

– Pratt: made running time independent of alphabet

– Morris: trying to build a text editor.

Resolved theoretical and practical problems.

! Surprise when it was discovered.

! In hindsight, seems like right algorithm.

33

Boyer-Moore

Bob Boyer J. Strother Moore

34

Right-to-Left Scanning

Right-to-left scanning.

! Find offset i in text by moving left to right.

! Compare pattern to text by moving j right to left.

h i c k o r y , d i c k o r y , d o c k , c l o c k

c l o c k

c l o c k

.

c l o c k

c l o c k

35

Bad Character Rule

Bad character rule.

! Use right-to-left scanning.

! Upon mismatch of text character c, increase offset so that

character c in pattern lines up with text character c.

! Precompute right[c] = rightmost occurrence of c in pattern.

h i c k o r y d i c k o r y d o c k c l o c k

c l o c k

right[]

c

k

l

o

*

 3

 4

 1

 2

-1

c l o c k

c l o c k

c l o c k

c l o c k

c l o c k

c l o c k

.

36

Bad Character Rule

Bad character rule.

! Use right-to-left scanning.

! Upon mismatch of text character c, increase offset so that

character c in pattern lines up with text character c.

! Precompute right[c] = rightmost occurrence of c in pattern.

h i c k o r y , d i c k o r y , d o c k , c l o c k

c l o c k

right[]

c

k

l

o

*

 3

 4

 1

 2

-1

c l o c k

c l o c k

c l o c k

c l o c k

c l o c k

c l o c k

.

c l o c k

37

Bad Character Rule: Java Implementation

 public static int search(String pattern, String text) {

 int M = pattern.length(), N = text.length();

 int[] right = new int[256];

 for (int c = 0; c < 256; c++) right[c] = -1;

 for (int j = 0; j < M; j++) right[pattern.charAt(j)] = j;

 int i = 0; // offset

 while (i < N - M) {

 int skip = 0;

 for (int j = M-1; j >= 0; j--) {

 if (pattern.charAt(j) != text.charAt(i + j)) {

 skip = Math.max(1, j - right[text.charAt(i + j)]);

 break;

 }

 }

 if (skip == 0) return i; // found

 i = i + skip;

 }

 return -1;

}

rightmost occurrence of c in pattern

bad character rule

38

Bad Character Rule: Analysis

Bad character rule analysis.

! Highly effective in practice, particularly for English text: O(N / M).

! Takes ((MN) time in worst case.

b a a a a a a

a a

b a a a a a a

b a a a a a a

b a a a a a a

b a a a a a a

b a a a a a a

b a a a a a a

b a a a a a a

39

Strong Good Suffix Rule

Strong good suffix rule. [a KMP-like suffix rule]

! Right-to-left scanning.

! Suppose text matches suffix t of pattern but mismatches in

previous character c.

! Find rightmost copy of t in pattern whose preceding letter is not c,

and shift; if no such copy, shift M positions.

x c a b d a b d a b

string good suffix rule: can skip over this
since we already know dab doesn't match

bad character rule: skip only 1 position

x c a b d a b d a b

x x x x x x x b a b ? ? ? ? ? ? x x x x x x x x

t = "ab"

c = 'b'

40

Boyer-Moore

Boyer-Moore.

! Right-to-left scanning.

! Bad character rule.

! Strong good suffix rule.

Boyer-Moore analysis.

! O(N / M) average case if given letter usually doesn't occur in string.

– time decreases as pattern length increases

– sublinear in input size!

! At most 3N comparisons to find a match.

Boyer-Moore in the wild. Unix grep, emacs.

always take best of two shifts

41

String Search Implementation Cost Summary

Karp-Rabin

Implementation

KMP

%(N)

Typical

1.1 N †

 %(N) ‡

Worst

2N

Boyer-Moore N / M † 3N

Brute 1.1 N † M N

† assumes appropriate model
‡ randomized

Search for M-character pattern in N-character text

42

Boyer-Moore and Alphabet Size

Boyer-Moore space requirement. %(M + |'|)

Big alphabets.

! Direct implementation may be impractical, e.g., Unicode.

! Fix: search one byte at a time.

Small alphabets.

! Loses effectiveness when ' is too small, e.g., DNA.

! Fix: group characters together, e.g., aaaa, aaac, ….

43

Finding All Matches

Karp-Rabin. Can find all matches in O(M + N) expected time using

Muthukrishnan variant.

Knuth-Morris-Pratt. Can find all matches in O(M + N) time via simple

modification.

Boyer-Moore. Can find all matches in O(M + N) time using Galil variant.

search pattern: aabaaa

3 4
a a

5 6
a

0 1
a a

2
b

b

b

b

b

b

a

accept state

b

a

44

Multiple String Search

Multiple string search. Search for any of k different patterns.

! Naïve KMP: O(kN + M1 + … + Mk).

! Aho-Corasick: O(N + M1 + … + Mk).

! Ex: screen out dirty words from a text stream.

3 4
a

0 1
b a

2
b

b

5

a

6

a

7

a

8
b

9
b

b

a a

DFA for (aaa or abb or baba)

