String Searching

Reference: Chapter 19, Algorithms in C, $2^{\text {nd }}$ Edition, Robert Sedgewick.

Robert Sedgewick and Kevin Wayne . Copyright $\odot 2005$. http://www.Princeeton.EDU/~cos226

Applications

Applications.

- Parsers.
- Lexis/Nexis.
- Spam filters
- Virus scanning.
- Digital libraries.
- Screen scrapers.

Word processors

- Web search engines.
- Natural language processing.
- Carnivore surveillance system.
- Computational molecular biology.
- Feature detection in digitized images

String search. Given a pattern string, find first match in text. Model. Can't afford to preprocess the text.

Parameters. $N=$ length of text, $M=$ length of pattern.
 ```typically N»M```

Pattern

\square
Text

$M=6, N=21$

Brute Force: Typical Case

Brute force. Check for pattern starting at every text position.

```
public static int search(String pattern, String text) {
    int M = pattern.length();
    int N = text.length();
    for (int i = 0; i < N - M; i++) {
        int j
        for (j = 0; j < M; j++) {
            if (text.charAt(i+j) != pattern.charAt(j))
                break;
        }
        if (j == M) return i; // return offset i of match
    }
    return -1; // not found
}
```

Analysis of Brute Force

Analysis of brute force.

- Running time depends on pattern and text.
- Slow if M and N are large, and have lots of repetition.

Goal. Find current stock price of Google.
<tr>

<td class="yfnc_tablehead1" width="48\%"> Last Trade:
Last T
td
<td class="yfnc_tabledata1">
<big>475.11</big>
</td></tr>
<tr>

<td class="yfnc_tablehead1" width="48\%"> Trade Time:
</td>
<td class="yfnc_tabledata1">
11:13AM ET

	comparisons	
Implementation	Typical	Worst
Brute	$1.1 \mathrm{~N}^{\dagger}$	M N

$$
\text { Search for M-character pattern in } N \text {-character text }
$$

† assumes appropriate model

Goal. Find current stock price of Google.

- s.indexOf(t, i): index of first occurrence of pattern t in string s, starting at offset i.
- Read raw html from http://finance.yahoo.com/q?s=goog.
- Find first string delimited by and after Last Trade.

```
public class StockQuote f
    public static void main(String[] args)
        String name = "http://finance.yahoo.com/q?s=" ,
        In in = new In(name + args[0])
        String input = in.readAll()
        int start = input.indexOf("Last Trade:", 0),
        int from = input.indexOf("<b>", start)
        int to = input.indexOf("</b>", from);
        String price = input.substring(from + 3, to)
        System.out.println(price)
    }
}
    java StockQuote goog
    475.90
```


Karp-Rabin

Karp-Rabin Randomized Fingerprint Algorithm
Theoretical challenge. Linear-time guarantee.
fundamental algorithmic problem
Practical challenge. Avoid backup.
often no room or time to save text

Idea: use hashing.

- Compute hash function for each text position.
- No explicit hash table: just compare with pattern hash!

Ex. Hash "table" size $=97$.
Pattern

5	9	2	6	5	59265%	97

3	1	4	1	5	9	2	6	5	3	5	8	9	7	9	3	2	3	8	4	6
3	1	4	1	5							31415	\%	97 =							
	1	4	1	5	9						14159	$\%$	97 =							
		4	1	5	9	2					41592	\%	77 =							
			1	5	9	2	6				15926	$\%$	$97=$							
				5	9	2	6	5			59265		$97=$							

Brute force. $O(M)$ arithmetic ops per hash

Faster method to compute hash of adjacent substrings.

- Use previous hash to compute next hash.
- O(1) time per hash.

```
except first one
```

Ex.

- Pre-computed: $10000 \% 97=9$
- Previous hash: $41592 \% 97=76$
- Next hash:

15926 \% 97 = ??

Observation.

key property of mod: can mod out any time

- $15926 \% 97 \equiv(41592-(4 * 10000)) * 10+6$
$\equiv(76-(4 * 9)) * 10+6$
= 406
三 18

Karp-Rabin: False Matches

False match. Hash of pattern collides with another substring.

- $59265 \% 97=95$
- 59362 \% 97 = 95

How to choose modulus p.

- p too small \Rightarrow many false matches.
- p too large \Rightarrow too much arithmetic.
- Ex: $p=8355967 \Rightarrow$ avoid 32 -bit integer overflow.
- Ex: $p=35888607147294757 \Rightarrow$ avoid 64 -bit integer overflow.

```
public static int search(String p, String t)
    nt M = p.length(), N = t.length()
    int q = 8355967
    for (int j = 1; j < M; j++)
        dM = (d * dM) % q;
```



```
        M, (nt i = 0; i < M; j++) {
            h1 = (h1*d + p.charAt(i)) %q; // hash of pattern
            h2 = (h2*d + t.charAt(i)) % q
    }
    if (h1 == h2) return 0; // match found
    for (int i=M; i < N; i++) {
        h2 = (h2 + d*q - dM*t.charAt(i-M)) % q; // remove leftmost digit
        if (h1 == h2) return i - M + 1; // match found
    }
    }
}
```


// table size
 // radix

// precompute $d^{\wedge}(M-1) \% q$
/ hash of pattern
/ hash of text
/ match found

```
        h2 = (h2*d + t.charAt(i)) % q; // insert rightmost digit
    /match foun
```


Karp-Rabin: Randomized Algorithms

Theorem. If $M N \geq 29$ and p is a random prime between 1 and $M N^{2}$, then $\operatorname{Pr}[$ false match] $\leq 2.53 / \mathrm{N}$.
relies on prime number theorem

Randomized algorithm. Choose table size p at random to be huge prime.

Monte Carlo. Don't bother checking for false matches.

- Guaranteed to be fast: $O(M+N)$.
- Expected to be correct (but false match possible).

Las Vegas. Upon hash match, do full compare; if false match, try again with new random prime.

- Guaranteed to be correct.
- Expected to be fast: $O(M+N)$.
Q. Would either version of Rabin-Karp make a good library function?

Karp-Rabin summary.

- Create fingerprint of each substring and compare fingerprints.
- Expected running time is linear.
- Idea generalizes, e.g., to 2D patterns.

	character comparisons	
Implementation	Typical	Worst
Brute	$1.1 \mathrm{~N}^{+}$	$M \mathrm{~N}$
Karp-Rabin	$\Theta(\mathrm{N})$	$\Theta(\mathrm{N})^{\ddagger}$

Search for M -character pattern in N -character text \dagger assumes appropriate model
\ddagger randomized

Knuth-Morris-Pratt: DFA Simulation

KMP algorithm. [over binary alphabet]

- Build DFA from pattern.
- Run DFA on text.

Knuth-Morris-Prat†

Vaughan Pratt

Interpretation of state i. Length of longest prefix of search pattern that is a suffix of input string.

Ex. End in state 4 iff text ends in aaba
Ex. End in state 2 iff text ends in aa (but not aabaa or aabaaa).

DFA used in KMP has special property.

- Upon character match in state j, go forward to state j+1.
- Upon character mismatch in state $j, g o$ back to state next [j].

Knuth-Morris-Pratt: DFA Construction

Iterative construction. Suppose you've created DFA for pattern aabaaa.
How to extend to DFA for pattern aabaaab ?

- Easy: transition from state 6 if next char matches.
- Challenge: transition from state 6 if next char mismatches.

Wishful thinking. Simulate aabaaaa on DFA.
Key idea. Simulate xabaaaa on DFA.

Two key differences from brute force.

- Text pointer i never "backs up."
- Need to precompute next [] table.

```
int j = 0;
for (int i = 0; i < N; i++)
    if (t.charAt(i) == p.charAt(j)) j++; // match
    lse j = next[j]; // mismatch
    if (j == M) return i - M + 1; // found
}
return -1;
    // not found
```

Simulation of KMP DFA (assumes binary alphabet)

Knuth-Morris-Pratt: DFA Construction

Iterative construction. Suppose you've created DFA for pattern aabaaa. How to extend to DFA for pattern aabaaab ?

- Easy: transition from state 6 if next char matches.
- Challenge: transition from state 6 if next char mismatches.

Wishful thinking. Simulate aabaaaa on DFA.
Key idea. Simulate xabaaaa on DFA.
Efficient version. Pre-compute simulation of æabaaa.

DFA construction for KMP. DFA builds itself

State 6. Given DFA for aabaaa and state X of simulating xabaaa, compute DFA for жabaaab and state X of simulating æabaaab.
next[6] $=X \rightarrow a=2$
$x=2$

- Update $X=X \rightarrow$ b $=3$.

DFA Construction for KMP: Java Implementation

Build DFA for KMP.

- Takes $O(M)$ time
- Requires $O(M)$ extra space to store next [] table.

```
int X = 0;
int[] next = new int[M]
for (int j = 1; j < M; j++) {
    if (p.charAt(X) == p.charAt(j)) { // char match
        next[j] = next[X]
        x = x + 1;
    }
    else {
        x = next[X]
    }
}
```


DFA construction for KMP DFA builds itself!

State 7. Given DFA for aabaaab and state X of simulating xabaaab, compute DFA for ※abaaabb and state X of simulating æabaaabb.

- next[7] $=X \rightarrow a=4$
- Update $\mathrm{X}=\mathrm{X} \rightarrow \mathrm{b}=0$.

```
\(x=3\)
```

Optimized KMP Implementation

Ultimate search program for aabaaabb pattern.

- Specialized C program.
- Machine language version of C program.

```
int kmpearch(char t[]) {
    int i = 0;
    s0: if (t[i++] != a') goto s0;
    s1: if (t[i++] != 'a') goto s0;
    s2: if (t[i++] != 'b') goto s2;
    3. if (t[i++] != 'a') goto so
    3: if (t[i++] != 'a') goto s0;
    s4: if (t[i++] != 'a') goto s0;
    s5: if (t[i++] != 'a') goto s3;
    s6: if (t[i++] != 'b') goto s2;
    s7: if (t[i++] != 'b') goto s4;
    return i - 8;
}
```

assumes pattern is in text (o/w use sentinel)

DFA for patterns over arbitrary alphabet Σ.

- For each character in alphabet, determine next state.
- Lookup table requires $O(M|\Sigma|)$ space.
can be expensive if $\Sigma=$ Unicode alphabet
Ex. DFA for pattern ababcb.

String Search Implementation Cost Summary

KMP analysis.

- NFA simulation requires at most 2 N comparisons.
- advances $\leq N$
- retreats \leq advances
- NFA construction takes $\Theta(M)$ time and space.
character
comparisons

Implementation	Typical	Worst
Brute	$1.1 \mathrm{~N}^{+}$	M N
Karp-Rabin	$\Theta(\mathrm{N})$	$\Theta(\mathrm{N}){ }^{\ddagger}$
KMP	$1.1 \mathrm{~N}^{+}$	2 N
Search for M-character pattern in N -character text \dagger assumes appropriate model \ddagger randomized		

NFA for patterns over arbitrary alphabet Σ.

- Read new character only upon success (or failure at beginning).
- Reuse current character upon failure and follow back.

Ex. NFA for pattern ababcb.

ext = ababaaba

History of KMP

History of KMP.

- Inspired by esoteric theorem of Cook that says linear time algorithm should be possible for 2-way pushdown automata.
- Discovered in 1976 independently by two theoreticians and a hacker.
- Knuth: discovered linear time algorithm
- Pratt: made running time independent of alphabet
- Morris: trying to build a text editor.

Resolved theoretical and practical problems.

- Surprise when it was discovered.
- In hindsight, seems like right algorithm.

Boyer-Moore

Bad Character Rule

Bad character rule.

- Use right-to-left scanning.
- Upon mismatch of text character c, increase offset so that character c in pattern lines up with text character c.
- Precompute right [c] = rightmost occurrence of c in pattern.

right[]	
c	3
k	4
1	1
-	2
*	-1

Bad character rule

- Use right-to-left scanning.
- Upon mismatch of text character c, increase offset so that character c in pattern lines up with text character c.
- Precompute right [c] = rightmost occurrence of c in pattern.

\mathbf{h}	\mathbf{i}	\mathbf{c}	\mathbf{k}	\mathbf{o}	\mathbf{r}	\mathbf{y}
\mathbf{c}	\mathbf{l}	\circ	c	\mathbf{k}		
		c	\mathbf{l}	\circ	c	\mathbf{k}

c	1	0	c	\mathbf{k}
			1	0

c 1 oc k


```
public static int search(String pattern, String text) {
    int M = pattern.length(), N = text.length();
    int[] right = new int[256];
    for (int c = 0; c < 256; c++) right[c] = -1;
    for (int j = 0; j < M; j++) right[pattern.charAt(j)] = j;
    int i = 0; // offset rightmost occurrence of c in pattern
    while (i < N - M) {
        int skip = 0;
        for (int j = M-1; j >= 0; j--) {
            if (pattern.charAt(j) != text.charAt (i + j)) {
                skip = Math.max(1, j - right[text.charAt (i + j)]);
                break; bad character rule
            }
        }
        if (skip == 0) return i; // found
        i = i + skip;
    }
    return -1;
}
```


Strong Good Suffix Rule

Strong good suffix rule. [a KMP-like suffix rule]

- Right-to-left scanning.
- Suppose text matches suffix \dagger of pattern but mismatches in previous character c.
- Find rightmost copy of \dagger in pattern whose preceding letter is not c, and shift; if no such copy, shift M positions.

$$
\begin{aligned}
& \mathrm{t}=\text { "ab' }^{\prime} \\
& \mathrm{c}=\mathrm{b}^{\prime}
\end{aligned}
$$

string good suffix rule: can skip over this
since we already know dab doesn't match
bad character rule: skip only 1 position

Bad character rule analysis.

- Highly effective in practice, particularly for English text: $O(N / M)$.
- Takes $\Omega(M N)$ time in worst case.

```
|a a a a a a a a c:a a a a a a a a a a a a a a a a a a a 
```

|a

```
|a
    b a a a a a a a
    b a a a a a a a
        l b a a a a a a
        l b a a a a a a
            b a a a a a a
            b a a a a a a
            lu||l|l||
            lu||l|l||
                |b a
                |b a
                    |b
```

```
                    |b
```

```

Boyer-Moore.
- Right-to-left scanning.
- Bad character rule.
- Strong good suffix rule.
always take best of two shifts

Boyer-Moore analysis.
- \(O(N / M)\) average case if given letter usually doesn' \(\dagger\) occur in string.
- time decreases as pattern length increases
- sublinear in input size!
- At most 3 N comparisons to find a match.

Boyer-Moore in the wild. Unix grep, emacs.
\begin{tabular}{|c|c|c|}
\hline Implementation & Typical & Worst \\
\hline Brute & \(1.1 \mathrm{~N}^{\dagger}\) & \(M \mathrm{~N}\) \\
\hline Karp-Rabin & \(\Theta(\mathrm{N})\) & \(\Theta(\mathrm{N})^{\ddagger}\) \\
\hline KMP & \(1.1 \mathrm{~N}^{\dagger}\) & 2 N \\
\hline Boyer-Moore & \(\mathrm{N} / \mathrm{M}^{\dagger}\) & 3 N \\
\hline
\end{tabular}

Search for M-character pattern in N -character text
\(\dagger\) assumes appropriate model
\(\xlongequal{\dagger}\) assumes app

Boyer-Moore space requirement. \(\Theta(M+|\Sigma|)\)

Big alphabets.
- Direct implementation may be impractical, e.g., Unicode
- Fix: search one byte at a time.

Small alphabets.
- Loses effectiveness when \(\Sigma\) is too small, e.g., DNA.
. Fix: group characters together, e.g., aaaa, aaac, ...

\section*{Finding All Matches}

Karp-Rabin. Can find all matches in \(O(M+N)\) expected time using Muthukrishnan variant.

Knuth-Morris-Pratt. Can find all matches in \(O(M+N)\) time via simple modification.


Boyer-Moore. Can find all matches in \(O(M+N)\) time using Galil variant

Multiple string search. Search for any of \(k\) different patterns.
- Naïve KMP: \(O\left(k N+M_{1}+\ldots+M_{k}\right)\).
- Aho-Corasick: \(O\left(N+M_{1}+\ldots+M_{k}\right)\)
- Ex: screen out dirty words from a text stream.
```

