Reductions

Robert Sedgewick and Kevin Wayne . Copyright $\odot 2006$ • http://www/Princeton EDU/~cos226

Desiderata

Desiderata. Classify problems according to their computational requirements.

Desiderata'. Suppose we could (couldn't) solve problem X efficiently. What else could (couldn' \dagger) we solve efficiently?

Desiderata. Classify problems according to their computational requirements.

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Reduction

Def. Problem X reduces to problem Y if given a subroutine for Y, can solve X. $\quad{ }_{\text {don't confuse with reduces from }}$

- Cost of solving $X=$ cost of solving $Y+$ cost of reduction.

Ex. $\mathrm{X}=$ Euclidean MST, $\mathrm{Y}=$ Voronoi.

Def. Problem X reduces to problem Y if given a subroutine for Y,
can solve X.
don't confuse with reduces from
. Cost of solving $X=$ cost of solving $Y+$ cost of reduction.

Consequences.

- Classify problems: establish relative difficulty between two problems.
- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.

Def. Problem X linear reduces to problem Y if X can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for Y.
- Notation: $X \leq$ Y.

Some familiar examples.

- Median $\leq_{\llcorner }$sorting.
- Element distinctness $\leq_{\llcorner }$sorting
- Closest pair $\leq _$Voronoi.
- Euclidean MST $\leq_{\llcorner }$Voronoi.
- Arbitrage $\leq_{\llcorner }$Negative cycle detection.
- Linear programming $\leq_{\llcorner }$Linear programming in std form.

Linear Time Reductions

ef. Problem X linear reduces to problem Y if X can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for Y.

Consequences.

- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y .
- Classify problems: establish relative difficulty between two problems.

Claim. Undirected shortest path (with nonnegative weights) linearly reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Convex Hull and Sorting

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points of the convex hull (in counter-clockwise order).

Claim. Convex hull linear reduces to sorting
Pf. Graham scan algorithm.

Caveat. Reduction invalid in networks with negative weights (even if no negative cycles).

Remark. Can still solve shortest path problem in undirected graphs if no negative cycles, but need more sophisticated techniques.
reduce to weighted non-bipartite matching (!)

Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for Y.

Consequences.

- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.
- Classify problems: establish relative difficulty between two problems.

Theorem. In quadratic decision tree model of computation, sorting N integers requires $\Omega(N \log N)$ steps.
allow tests of the form $x_{i}<x_{j}$ or
$\left(x_{j}-x_{i}\right)\left(y_{k}-y_{i}\right)-\left(y_{j}-y_{i}\right)\left(x_{k}-x_{j}\right)<0$
see next slide
seen
Claim. Sorting linear reduces to convex hull.
Corollary. Any ccw-based convex hull algorithm requires $\Omega(N \log N)$ steps.

3-SUM Reduces to 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0 ? 3-COLLINEAR. Given N distinct points in the plane, are there 3 that all lie on the same line?
recall Assignment 2
Claim. $3-S U M \leq _3$-COLLINEAR.

```
    see next two slides
```

Conjecture. Any algorithm for 3-SUM requires $\Omega\left(\mathrm{N}^{2}\right)$ time.
Corollary. Sub-quadratic algorithm for 3-COLLINEAR unlikely.

Sorting instance. $\quad x_{1}, x_{2}, \ldots, x_{N}$
Convex hull instance. $\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right), \ldots,\left(x_{N}, x_{N}^{2}\right)$

Observation. Region $\left\{x: x^{2} \geq x\right\}$ is convex \Rightarrow all points are on hull.

Consequence. Starting at point with most negative x, counter-clockwise order of hull points yields items in ascending order.

3-SUM Reduces to 3-COLLINEAR

Claim. $3-S U M \leq \perp 3-C O L L I N E A R$

- 3-SUM instance:
$x_{1}, x_{2}, \ldots, x_{N}$
- 3-COLLINEAR instance:

$$
\left(x_{1}, x_{1}^{3}\right),\left(x_{2}, x_{2}^{3}\right), \ldots,\left(x_{N}, x_{N}^{3}\right)
$$

Lemma. If $a, b, a n d ~ c$ are distinct then $a+b+c=0$ if and only if $\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are collinear.

Pf. Three points $\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are collinear iff:

Primality and Compositeness

PRIME. Given an integer x (represented in binary), is \times prime? COMPOSITE. Given an integer x, does x have a nontrivial factor?

Claim. PRIME $\leq_{\llcorner }$COMPOSITE.

```
public static boolean isPrime(BigInteger x)
    if (isComposite(x)) return false
    else (x)) return false;
}
```

Def. Problem X linear reduces to problem Y if X can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for Y.

Consequences.

- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.
- Classify problems: establish relative difficulty between two problems.

Primality and Compositeness

PRIME. Given an integer \times (represented in binary), is \times prime? COMPOSITE. Given an integer x, does x have a nontrivial factor?

Claim. COMPOSITE $\leq _$PRIME.

```
public static boolean isComposite(BigInteger x)
    if (isPrime(x)) return false
    else (x)) return false
}
```

Conclusion. COMPOSITE and PRIME have same complexity.

Caveat.

- System designer specs the interfaces for project.
- One programmer might implement isComposite() using isPrime ().
- Other programmer might implement isPrime() using isComposite().
- Be careful to avoid infinite reduction loops in practice.

```
public static boolean isComposite(BigInteger x)
    if (isPrime(x)) return false;
    else return true;
}
```

```
public static boolean isPrime(BigInteger x)
    if (isComposite(x)) return false:
    else (isComposite(x)) return false;
}
```


Polynomial-Time Reductions

Goal. Classify and separate problems according to relative difficulty.

- Those that can be solved in polynomial time.
- Those that (probably) require exponential time.

Establish tractability. If $\mathrm{X} \leq \mathrm{y}$ 㭗 Y can be solved in poly-time, then X can be solved in poly-time.

Establish intractability. If $\mathrm{Y} \leq_{p} \mathrm{X}$ and Y cannot be solved in poly-time, then X cannot be solved in poly-time.

Transitivity. If $X s_{p} Y$ and $Y s_{p} Z$ then $X \leq p Z$.

Assignment problem. Assign n jobs to n machines to minimize tota cost, where $c_{i j}=$ cost of assigning job j to machine i.

	1^{\prime}	${ }^{\prime}$	3^{\prime}	4^{\prime}	5'
1	3	8	9	15	10
2	4	10	7	16	14
3	9	13	11	19	10
4	8	13	12	20	13
5	1	7	5	11	9
	$+10+11+20+9=53$				

Applications. Match jobs to machines, match personnel to tasks, match Princeton students to writing seminars.

3-Satisfiability

Literal: A Boolean variable or its negation.
x_{i} or $\overline{x_{i}}$

Clause. A disjunction of 3 distinct literals.
$C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$

Conjunctive normal form. A propositional $\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$ formula Φ that is the conjunction of clauses.

3-SAT. Given a CNF formula Φ consisting of k clauses over n literals, does it have a satisfying truth assignment?
$\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{4}\right)$
Solution: $x_{1}=$ true, $x_{2}=$ true, $x_{3}=$ false, $x_{4}=$ true

Key application. Electronic design automation (EDA). $\Phi=C_{1} \wedge$

$$
\left(\begin{array}{lll}
x_{1} \vee x_{2} \vee x_{3}
\end{array}\right) \wedge\left(\begin{array}{lll}
x_{1} \vee x_{2} \vee x_{3}
\end{array}\right) \wedge\left(\begin{array}{lll}
\left.x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{lll}
x_{1} \vee x_{2} \vee x_{4}
\end{array}\right) \wedge\left(\begin{array}{lll}
x_{2} \vee x_{3} \vee x_{4}
\end{array}\right)
\end{array}\right.
$$

$$
\text { Solution : } x_{1}=\text { true, } x_{2}=\text { true, } x_{3}=\text { false, } x_{4}=\text { true }
$$

LP formulation. $x_{i j}=1$ if job j assigned to machine i.

```
min }\mp@subsup{\sum}{1\leqslanti\leqslantn}{}\mp@subsup{\sum}{1\leqslantj\leqslantn}{}\mp@subsup{c}{ij}{}\mp@subsup{x}{ij}{
s. t. }\mp@subsup{\sum}{1\leqj\leqn}{\mp@subsup{x}{ij}{}}=1\quad1\leqi\leq
    \sum\sumi\leqn
xij }\geq0\quad1\leqi,j\leq
```

Theorem. [Birkhoff 1946, von Neumann 1953] All extreme points of the above polytope are $\{0-1\}$-valued.

Corollary. Assignment problem reduces to LP; can solve in poly-time.

\uparrow

we assume LP returns an extreme point solution

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

Graph 3-Colorability

Claim. Graph is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true
- (ii) ensures each literal is T or F

Claim. 3-SAT $\leq p 3$-COLOR.

Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3 -colorable iff Φ is satisfiable.

Construction.
i. Create one vertex for each literal.
ii. Create 3 new vertices T, F, and B; connect them in a triangle, and connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, attach a gadget of 6 vertices and 13 edges.
to be described next

Graph 3-Colorability

Claim. Graph is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.

Claim. Graph is 3-colorable iff Φ is satisfiable.
Pf. \Rightarrow Suppose graph is 3 -colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.
(if not, then G wouldn't be 3 -colorable, a contradiction)

More Poly-Time Reductions

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Leftarrow Suppose 3-SAT formula Φ is satisfiable.

- Color all true literals T and false literals F.
- Color vertex below green vertex F, and vertex below that B.
- Color remaining middle row vertices B.
- Color remaining bottom vertices T or F as forced. -

Cook's Theorem

Reductions are important in theory to:

- Establish tractability.
- Establish intractability
- Classify problems according to their computational requirements.

Reductions are important in practice to

- Design algorithms.
- Design reusable software modules.
- stack, queue, sorting, priority queue, symbol table, set, graph shortest path, regular expressions, linear programming
- Determine difficulty of your problem and choose the right tool. - use exact algorithm for tractable problems
- use heuristics for intractable problems

1

e.g., bin packing

