
Robert Sedgewick and Kevin Wayne   •   Copyright © 2006   •   http://www.Princeton.EDU/~cos226

Reductions

2

Desiderata

Desiderata.  Classify problems according to their computational

requirements.

Frustrating news.  Huge number of fundamental problems have defied

classification for decades.

3

Desiderata

Desiderata.  Classify problems according to their computational

requirements.

Desiderata'.  Suppose we could (couldn't) solve problem X efficiently.

What else could (couldn't) we solve efficiently?

Give me a lever long enough and a fulcrum on which to place it,
and I shall move the world.   -Archimedes

4

Reduction

Def.  Problem X reduces to problem Y if given a subroutine for Y,

can solve X.

! Cost of solving X  =  cost of solving Y  +  cost of reduction.

Ex.  X = Euclidean MST,  Y = Voronoi.

don't confuse with reduces from

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y



5

Reduction

Def.  Problem X reduces to problem Y if given a subroutine for Y,

can solve X.

! Cost of solving X  =  cost of solving Y  +  cost of reduction.

Consequences.

! Classify problems:  establish relative difficulty between two problems.

! Design algorithms:  given algorithm for Y, can also solve X.

! Establish intractability:  if X is hard, then so is Y.

don't confuse with reduces from

6

Linear Time Reductions

7

Linear Time Reductions

Def.  Problem X linear reduces to problem Y if X can be solved with:

! Linear number of standard computational steps.

! One call to subroutine for Y.

! Notation:  X ! L Y.

Some familiar examples.

! Median ! L sorting.

! Element distinctness ! L sorting.

! Closest pair ! L Voronoi.

! Euclidean MST ! L Voronoi.

! Arbitrage ! L Negative cycle detection.

! Linear programming  ! L  Linear programming in std form.

8

Linear Time Reductions

Def.  Problem X linear reduces to problem Y if X can be solved with:

! Linear number of standard computational steps.

! One call to subroutine for Y.

Consequences.

! Design algorithms:  given algorithm for Y, can also solve X.

! Establish intractability:  if X is hard, then so is Y.

! Classify problems:  establish relative difficulty between two problems.



9

Shortest Paths on Graphs and Digraphs

Claim.  Undirected shortest path (with nonnegative weights)

linearly reduces to directed shortest path.

Pf.  Replace each undirected edge by two directed edges.

s

2

3

5

6 t 5

 10

 12

15

 9

 12

10 15
 4

s

2

3

5

6 t 5

  10

 12

 15

 9

12

 10

 9

 10

 4

15

 12 12

 10

 15 15
 4

10

Shortest Paths with Negative Weights

Caveat.  Reduction invalid in networks with negative weights

(even if no negative cycles).

Remark.  Can still solve shortest path problem in undirected graphs if

no negative cycles, but need more sophisticated techniques.

tvs 7  -4

tvs 7  -4

7  -4

reduce to weighted non-bipartite matching (!)

11

Convex Hull and Sorting

Sorting.  Given N distinct integers, rearrange them in ascending order.

Convex hull.  Given N points in the plane, identify the extreme points

of the convex hull (in counter-clockwise order).

Claim.  Convex hull linear reduces to sorting.

Pf.  Graham scan algorithm.

convex hull

1251432

2861534

3988818

4190745

13546464

89885444

sorting

12

Linear Time Reductions

Def.  Problem X linear reduces to problem Y if X can be solved with:

! Linear number of standard computational steps.

! One call to subroutine for Y.

Consequences.

! Design algorithms:  given algorithm for Y, can also solve X.

! Establish intractability:  if X is hard, then so is Y.

! Classify problems:  establish relative difficulty between two problems.



13

Sorting and Convex Hull:  Lower Bound

Theorem.  In quadratic decision tree model of computation,

sorting N integers requires "(N log N) steps.

Claim.  Sorting linear reduces to convex hull.

Corollary.  Any ccw-based convex hull algorithm requires "(N log N) steps.

allow tests of the form xi < xj or
(xj - xi) (yk - yi) - (yj - yi) (xk - xi) < 0

see next slide

convex hull

1251432

2861534

3988818

4190745

13546464

89885444

sorting

14

Sorting Linear Reduces to Convex Hull

Sorting instance.

Convex hull instance.

Observation.  Region {x : x2 # x} is convex  $  all points are on hull.

Consequence.  Starting at point with most negative x,

counter-clockwise order of hull points yields items in ascending order.

  

! 

(x1, x1
2
), (x2, x2

2
),K, (x

N
, x

N

2
)

  

! 

x1, x2,K, x
N

! 

(x
i
, x
i

2
)

! 

(x j , x j

2
)

! 

f (x) = x
2

15

3-SUM Reduces to 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,
are there 3 that all lie on the same line?

Claim.  3-SUM  ! L 3-COLLINEAR.

Conjecture.  Any algorithm for 3-SUM requires "(N2) time.

Corollary.  Sub-quadratic algorithm for 3-COLLINEAR unlikely.

recall Assignment 2

your N2 log N algorithm from Assignment 2 was pretty good

see next two slides

16

3-SUM Reduces to 3-COLLINEAR

Claim.  3-SUM  ! L 3-COLLINEAR.

! 3-SUM instance:

! 3-COLLINEAR instance:

(1, 1)

(2, 8)

(-3, -27)

-3 + 2 + 1 = 0

  

! 

(x1, x1
3
), (x2, x2

3
),K, (x

N
, x

N

3
)

  

! 

x1, x2,K, x
N

! 

y  =  x
3



17

3-SUM Reduces to 3-COLLINEAR

Lemma.  If a, b, and c are distinct then a + b + c = 0 if and only if

(a, a3), (b, b3), (c, c3) are collinear.

Pf.   Three points (a, a3), (b, b3), (c, c3) are collinear iff:

! 

a
3
"b

3

a"b
=

b
3
"c

3

b"c
#

(a"b) (a
2
+ ab+b

2
)

a"b
=

(b"c) (b
2

+bc+c
2
)

b"c

# c
2

+bc" a
2
" ab = 0

# (c" a) (c+ a+b) = 0

# c = a or a+b+ c = 0

not distinct

denominators are nonzero
if a, b, and c are distinct

18

Linear Time Reductions

Def.  Problem X linear reduces to problem Y if X can be solved with:

! Linear number of standard computational steps.

! One call to subroutine for Y.

Consequences.

! Design algorithms:  given algorithm for Y, can also solve X.

! Establish intractability:  if X is hard, then so is Y.

! Classify problems:  establish relative difficulty between two problems.

19

Primality and Compositeness

PRIME.  Given an integer x (represented in binary), is x prime?
COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Claim.  PRIME ! L COMPOSITE.

public static boolean isPrime(BigInteger x) {

   if (isComposite(x)) return false;
   else                return true;

}

20

Primality and Compositeness

PRIME.  Given an integer x (represented in binary), is x prime?
COMPOSITE.  Given an integer x, does x have a nontrivial factor?

Claim.  COMPOSITE ! L PRIME.

Conclusion.  COMPOSITE and PRIME have same complexity.

public static boolean isComposite(BigInteger x) {

   if (isPrime(x)) return false;
   else            return true;

}



21

Reduction Gone Wrong

Caveat.

! System designer specs the interfaces for project.

! One programmer might implement isComposite() using isPrime().

! Other programmer might implement isPrime() using isComposite().

! Be careful to avoid infinite reduction loops in practice.

public static boolean isComposite(BigInteger x) {

   if (isPrime(x)) return false;
   else            return true;

}

public static boolean isPrime(BigInteger x) {

   if (isComposite(x)) return false;
   else                return true;

}

22

Polynomial-Time Reductions

23

Poly-Time Reduction

Def.  Problem X polynomial reduces to problem Y if arbitrary instances

of problem X can be solved using:

! Polynomial number of standard computational steps, plus

! One call to subroutine for Y.

Notation.  X ! P Y.

Ex.  Assignment problem  ! P  LP.

Ex.  3-SAT ! P 3-COLOR.

Ex.  Any linear reduction.

24

Poly-Time Reductions

Goal.  Classify and separate problems according to relative difficulty.

! Those that can be solved in polynomial time.

! Those that (probably) require exponential time.

Establish tractability.  If X ! P Y and Y can be solved in poly-time,

then X can be solved in poly-time.

Establish intractability.  If Y ! P X and Y cannot be solved in poly-time,

then X cannot be solved in poly-time.

Transitivity.  If X ! P Y and Y ! P Z then X ! P Z.



25

Assignment Problem

Assignment problem.  Assign n jobs to n machines to minimize total

cost, where cij = cost of assigning job j to machine i.

Applications.  Match jobs to machines, match personnel to tasks,

match Princeton students to writing seminars.

1

2

3

4

5

1' 2' 3' 4' 5'

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

cost = 3 + 10 + 11 + 20 + 9 = 53

1

2

3

4

5

1' 2' 3' 4' 5'

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

cost = 8 + 7 + 20 + 8 + 11 = 44

26

Assignment Problem Reduces to Linear Programming

LP formulation.  xij = 1 if job j assigned to machine i.

Theorem.  [Birkhoff 1946, von Neumann 1953]  All extreme points

of the above polytope are {0-1}-valued.

Corollary.  Assignment problem reduces to LP; can solve in poly-time.

! 

min
1 " i " n

# cij xij
1 " j " n

#

s. t. xij
1 " j " n

# = 1 1 " i " n

xij
1 " i " n

# = 1 1 " j" n

xij $ 0 1 " i, j " n

we assume LP returns an extreme point solution

27

Literal: A Boolean variable or its negation.

Clause. A disjunction of 3 distinct literals.

Conjunctive normal form.  A propositional

formula % that is the conjunction of clauses.

3-SAT.  Given a CNF formula % consisting of k clauses over n literals,

does it have a satisfying truth assignment?

Key application.  Electronic design automation (EDA).

3-Satisfiability

  

! 

Cj = x
1
" x

2
" x

3

  

! 

x
i
  or  x

i

  

! 

" =  C
1
#C

2
# C

3
# C

4

! 

x
1
" x

2
" x

3( ) # x
1
" x

2
" x

3( ) # x
1
" x

2
" x

3( ) # x
1
" x

2
" x

4( ) # x
2
" x

3
 " x

4( )

! 

Solution :   x
1

= true, x
2

= true, x
3

= false, x
4

= true

28

Graph 3-Colorability

3-COLOR.  Given a graph, is there a way to color the vertices

red, green, and blue so that no adjacent vertices have the same color?

yes instance



29

Graph 3-Colorability

3-COLOR.  Given a graph, is there a way to color the vertices

red, green, and blue so that no adjacent vertices have the same color?

30

Graph 3-Colorability

Claim.  3-SAT ! P 3-COLOR.

Pf. Given 3-SAT instance %, we construct an instance of 3-COLOR

that is 3-colorable iff % is satisfiable.

Construction.

i. Create one vertex for each literal.

ii. Create 3 new vertices T, F, and B; connect them in a triangle,

and connect each literal to B.

iii. Connect each literal to its negation.

iv. For each clause, attach a gadget of 6 vertices and 13 edges.

to be described next

31

Graph 3-Colorability

Claim.  Graph is 3-colorable iff % is satisfiable.

Pf.  $  Suppose graph is 3-colorable.

! Consider assignment that sets all T literals to true.

! (ii) ensures each literal is T or F.

T

B

F

! 

x1

! 

x
1

! 

x2

! 

x
2

! 

xn

! 

x
n

! 

x3

! 

x
3

true false

base

32

Graph 3-Colorability

Claim.  Graph is 3-colorable iff % is satisfiable.

Pf.  $  Suppose graph is 3-colorable.

! Consider assignment that sets all T literals to true.

! (ii) ensures each literal is T or F.

! (iii) ensures a literal and its negation are opposites.

T

B

F

! 

x1

! 

x
1

! 

x2

! 

x
2

! 

xn

! 

x
n

! 

x3

! 

x
3

true false

base



34

Graph 3-Colorability

Claim.  Graph is 3-colorable iff % is satisfiable.

Pf.  $  Suppose graph is 3-colorable.

! Consider assignment that sets all T literals to true.

! (ii) ensures each literal is T or F.

! (iii) ensures a literal and its negation are opposites.

! (iv) ensures at least one literal in each clause is T.

T F

B

! 

x1

! 

x
2

! 

x3

if all are red …

true false

… then a contradiction
! 

C
i

= x
1
V x

2
V x

3

6-node gadget

(if not, then G wouldn't be 3-colorable, a contradiction)

35

Graph 3-Colorability

Claim.  Graph is 3-colorable iff % is satisfiable.

Pf.  &   Suppose 3-SAT formula % is satisfiable.

! Color all true literals T and false literals F.

! Color vertex below green vertex F, and vertex below that B.

! Color remaining middle row vertices B.

! Color remaining bottom vertices T or F as forced.  !

T F

B

! 

x1

! 

x
2

! 

x3

a literal set to true in 3-SAT assignment

true false

! 

C
i

= x
1
V x

2
V x

3

6-node gadget

36

More Poly-Time Reductions

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

Dick Karp
'85 Turing award

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING
Conjecture:  no poly-time algorithm for 3-SAT.
(and hence none of these problems)

37

Cook's Theorem

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

3-COLOR

reduces to 3-SAT

TSP

BIN-PACKING
All of these problems (any many more)
polynomial reduce to 3-SAT.

Stephen Cook
'82 Turing award



38

Cook + Karp

3-SAT

3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION INTEGER PROGRAMMING

KNAPSACK

3-COLOR

reduces to 3-SAT

TSP

BIN-PACKING
All of these problems are different manifestations
of one "really hard" problem:  P = NP?

3-SAT

reduces to 3-COLOR

42

Summary

Reductions are important in theory to:

! Establish tractability.

! Establish intractability.

! Classify problems according to their computational requirements.

Reductions are important in practice to:

! Design algorithms.

! Design reusable software modules.

– stack, queue, sorting, priority queue, symbol table, set, graph

shortest path, regular expressions, linear programming

! Determine difficulty of your problem and choose the right tool.

– use exact algorithm for tractable problems

– use heuristics for intractable problems

e.g., bin packing


