Priority Queues

Reference: Chapter 6, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Robert Sedgewick and Kevin Wayne • Copyright $\odot 2005$ • http://www.Princeton.EDU/~cos226

Data. Items that can be compared.

Basic operations.

Priority Queue Client Example

Problem: Find the largest M of a stream of N elements.

- Fraud detection: isolate $\$ \$$ transactions.
- File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N elements. Solution. Use a priority queue.

Operation	time	space
sort	$N \lg N$	N
elementary PQ	$M N$	M
binary heap	$N \lg M$	M
best in theory	N	M

```
MinPQ<String> Pq = new MinPQ<String>()
while(!StdIn.isEmpty()) {
    String s = StdIn.readString();
    pq.insert(s)
    if (pq.size() > M
        pq.delMin() ;
\}
hile (!pq.isEmpty())
System.out. println(pq.delMin())
```

Two elementary implementations.

Implementation	Insert	Del Max
unordered array	1	N
ordered array	N	1

Challenge. Implement both operations efficiently.

```
public class UnorderedPQ<Item extends Comparable> {
    private Item[] pq; // pq[i] = ith element on PQ
    private int N; // number of elements on PQ
    public UnorderedPQ(int maxN) {
        pq = (Item[]) new Comparable[maxN]
    }
    public boolean isEmpty() { return N == 0; }
    public void insert(Item x) { pq[N++] = x; }
    public Item delMax() {
        int max = 0;
        for (int i = 1; i < N; i++)
            if (less(max, i)) max = i
        exch(max, N-1)
        exch(max,N-1)
}
```

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.

- Empty or
- Node with links to left and right trees.

Heap-ordered binary tree.

- Keys in nodes.
- No smaller than children's keys.

Array representation.

- Take nodes in level order.
- No explicit links needed since tree is complete.

$\stackrel{6}{12} \mathrm{I})$

8 (A) 9 (E) ${ }_{10}$ (R) ${ }_{11}$ (A) ${ }_{12}$ (I)

Binary Heap Properties

Property A. Largest key is at root

Property B. Can use array indices to move through tree.

- Note: indices start at 1.
- Parent of node at k is at $k / 2$. \square
- Children of node at k are at 2 k and $2 \mathrm{k}+1$.

Property C. Height of N node heap is $1+\lfloor\lg N\rfloor$
γ
height only increases when N is a power of 2

Scenario. Exactly one node is bigger than its parent.

To eliminate the violation:

- Exchange with its parent.
- Repeat until heap order restored.

```
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
```


Insert. Add node at end, then promote.
public void insert(Item x) $\mathrm{pq}[++\mathrm{N}]=\mathbf{x}$;
$\operatorname{swim}(N)$
\}

Remove the Maximum

Remove max. Exchange root with node at end, then demote.

```
public Item delMax() {
    Item max = pq[1];
    exch(1, N--)
    sink(1);
    pq[N+1] = null;
    return max
}
```



```
public class MaxPQ<Item extends Comparable> {
    private Item[] pq;
    private int N;
    public MaxPQ(int maxN) { } same as array-based PQ
    public MaxPQ(int maxN) { { } Same as array-basedPQ ( iment in array
    public void insert(Item x) { }
    public Item delMax() {
    private void swim(int k) { }
    private void sink(int k) { } heap helper functions
    private boolean less(int i, int j) { }
    private void exch(int i, int j) { }
}
    private void exch(int i, int j) { } array helperfunctions

Minimum oriented priority queue. Replace less() with greater() and implement greater().

Array resizing. Add no-arg constructor, and apply repeated doubling.
```

$O(\log \mathrm{~N})$ amortized time per op

```

Immutability of keys. We assume client does not change keys while they're on the PQ. Best practice: make keys immutable.

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.
- Can implement using sink() and swim() abstractions, but we defer.

Priority Queues Implementation Cost Summary
\begin{tabular}{|c|c|c|c|}
\hline Operation & Insert & Remove Max & Find Max \\
\hline ordered array & N & 1 & 1 \\
\hline ordered list & N & 1 & 1 \\
\hline unordered array & 1 & N & N \\
\hline unordered list & 1 & N & N \\
\hline binary heap & \(\lg \mathrm{N}\) & \(\lg \mathrm{N}\) & 1 \\
\hline
\end{tabular}
worst-case asymptotic costs for \(P Q\) with \(N\) items

Digression: Heapsort

First pass: build heap.
- Insert items into heap, one at at time.
- Or can use faster bottom-up method; see book.
\[
\begin{aligned}
& \text { for }(\text { int } \mathbf{k}=\mathbf{N} / 2 ; \mathbf{k}>=1 ; \mathbf{k - -}) \\
& \quad \operatorname{sink}(\mathbf{a}, \mathbf{k}, \mathrm{N}) ;
\end{aligned}
\]

Second pass: sort.
- Remove maximum items, one at a time.
- Leave in array, instead of nulling out.
```

while (N > 1) {
exch (a, 1, N--);
sink (a, 1, N);
}

```

Property D. At most 2 Nlg N comparisons.

HEAPSORTING H|E|A|P|S|O|T|IN H|EACPS|OR(P)I NTG H|ERTSOAB|I N|G (I)R(P)SOA.EING (T) SR \(R P \mathbb{N}\) ) A|EIAG TSRPRNOAEIHG
 (R)P(O) \(\mathbb{N}(A) A E I S\) (B) \((\mathbb{N})\) G(I) H|A|ER
 (N) I\() \mathrm{H} G(A)=0\)
(I) (G) \(H(E) A\)
(H) \(G(A) E I\)
(G)AE E H I IN:O|P|R|S|T
(E)A G/HII N|OP|R|S|T
(A)EGHINOPR|T

AEGHINOPRST
Q. Sort in \(O(N \log N)\) worst-case without using extra memory?
A. Yes. Heapsort

Not mergesort? Linear extra space.
Not quicksort? Quadratic time in worst case.
challenge for bored: in-place merge
challenge for bored: \(O(N \log N)\) worst-case quicksort

Heapsort is optimal for both time and space, but:
- Inner loop longer than quicksort's.
- Makes poor use of cache memory.

Introsort. [David Musser 1997] Run quicksort, but switch over to heapsort if things are not going well.

Q1. How would you define "not going well"?
Q2. How would you detect it?

In the wild: g++ STL uses introsort
\(\uparrow\)
combo of quicksort, heapsort, and insertion

Sorting Summary
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & In-Place & Stable & Worst & Average & Best & Remarks \\
\hline Bubble sort & \(X\) & \(X\) & \(N^{2} / 2\) & \(N^{2} / 2\) & \(N\) & never use it \\
\hline Selection sort & \(X\) & & \(N^{2} / 2\) & \(N^{2} / 2\) & \(N^{2} / 2\) & \(N\) exchanges \\
\hline Insertion sort & \(X\) & \(X\) & \(N^{2} / 2\) & \(N^{2} / 4\) & \(N\) & use as cutoff for small \(N\) \\
\hline Shellsort & \(X\) & & \(N^{3 / 2}\) & \(N^{3 / 2}\) & \(N^{3 / 2}\) & with Knuth sequence \\
\hline Quicksort & \(X\) & & \(N^{2} / 2\) & \(2 N \ln N\) & \(N \lg N\) & fastest in practice \\
\hline Mergesort & & \(X\) & \(N \lg N\) & \(N \lg N\) & \(N \lg N\) & \(N \log N\) guarantee, stable \\
\hline Heapsort & \(X\) & & \(2 N \lg N\) & \(2 N \lg N\) & \(N \lg N\) & \(N \log N\) guarantee, in-place \\
\hline
\end{tabular}

\footnotetext{
\# Key Comparisons
}

\section*{15 puzzle.}
- Legal move: slide neighboring tile into blank square.
- Challenge: sequence of legal moves to put tiles in increasing order.
- Win \(\$ 1,000\) prize for solution.



Sam Loyd

A* Search of 8-Puzzle Game Tree

\section*{Priority first search.}
- Basic idea: explore positions in a more intelligent order.
\(\Rightarrow\). Ex 1: number of tiles out of order.
- Ex 2: sum of Manhattan distances + depth.

Implement \(A^{*}\) algorithm with \(P Q\).



Pictures from Sequential and Parallel Algorithms by Berman and Paul.

Unsolvable instances.
\begin{tabular}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline 8 & 7 & \\
\hline
\end{tabular}
87
\begin{tabular}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline & 10 & 11 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 9 & 10 & 11 \\
\hline 13 & 15 & 14
\end{tabular}

8-slider invariant. Parity of number of pairs of pieces in reverse order.
\begin{tabular}{|l|l|l|}
\hline 3 & 1 & 2 \\
\hline 4 & 5 & 6 \\
\hline 8 & 7 & \\
\hline
\end{tabular}

1-3, 2-3, 7-8
odd
\begin{tabular}{|l|l|l|}
\hline 3 & 1 & 2 \\
\hline 4 & 5 & 6 \\
\hline 8 & & 7 \\
\hline
\end{tabular}


1-3, 2-3, 7-8
odd

1-3, 2-3, 7-8, 5-8, 5-6 odd

\section*{Event-Driven Simulation}

\section*{}

\section*{Time-Driven Simulation}

Time-driven simulation.
- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.

- \(\mathrm{N}^{2}\) overlap checks per time quantum
- May miss collisions if dt is too large and colliding particles fail to overlap when we are looking.
- Simulation is too slow if dt is very small.


Event-driven simulation.
- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain priority queue of collision events, prioritized by time.
- Remove the minimum = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.

\section*{Particle-Particle Collision Prediction}

Collision prediction.
- Particle i: radius \(\sigma_{i}\), position ( \(r x_{i}, r y_{i}\) ), velocity \(\left(v x_{i}, v y_{i}\right)\).
- Particle \(j\) : radius \(\sigma_{j}\), position ( \(r x_{j}, r y_{j}\) ), velocity ( \(v x_{j}, v y_{j}\) ).
- Will particles \(i\) and \(j\) collide? If so, when?


Collision prediction.
- Particle of radius \(\sigma\) at position ( \(r x, r y\) ), moving with velocity ( \(v x, v y\) ).
- Will it collide with a horizontal wall? If so, when?
\[
\Delta t= \begin{cases}\infty & \text { if } v y=0 \\ (\sigma-r y) / v y & \text { if } v y<0 \\ (1-\sigma-r y) / v y & \text { if } v y>0\end{cases}
\]

Collision resolution. \(\left(v x^{\prime}, v y^{\prime}\right)=(v x,-v y)\).


\section*{Particle-Particle Collision Prediction}

Collision prediction.
- Particle i: radius \(\sigma_{i}\), position ( \(r x_{i}, r y_{i}\) ), velocity ( \(v x_{i}, v y_{i}\) ).
- Particle \(j\) : radius \(\sigma_{j}\), position ( \(\left(x_{j}, r y_{j}\right)\), velocity ( \(v x_{j}, v y_{j}\) ).
- Will particles \(i\) and \(j\) collide? If so, when?
\[
\begin{aligned}
& \Delta t= \begin{cases}\infty & \text { if } \Delta v \cdot \Delta r \geq 0 \\
\infty & \text { if } d<0 \\
-\frac{\Delta v \cdot \Delta r+\sqrt{d}}{\Delta v \cdot \Delta v} & \text { otherwise }\end{cases} \\
& d=(\Delta v \cdot \Delta r)^{2}-(\Delta v \cdot \Delta v)\left(\Delta r \cdot \Delta r-\sigma^{2}\right) \quad \sigma=\sigma_{i}+\sigma_{j}
\end{aligned}
\]
\[
\begin{array}{ll}
\Delta v=(\Delta v x, \Delta v y)=\left(v x_{i}-v x_{j}, v y_{i}-v y_{j}\right) & \Delta v \cdot \Delta v=(\Delta v x)^{2}+(\Delta v y)^{2} \\
\Delta r=(\Delta r x, \Delta r y)=\left(r x_{i}-r x_{j}, r y_{i}-r y_{j}\right) & \Delta r \cdot \Delta r=(\Delta r x)^{2}+(\Delta r y)^{2} \\
& \Delta v \cdot \Delta r=(\Delta v x)(\Delta r x)+(\Delta v y)(\Delta r y)
\end{array}
\]

Collision resolution. When two particles collide, how does velocity change?
\[
\begin{aligned}
& \left.\qquad \begin{array}{rl}
v x_{i}^{\prime} & =v x_{i}+J x / m_{i} \\
v y_{i}^{\prime} & =v y_{i}+J y / m_{i} \\
v x_{j}^{\prime} & =v x_{j}-J x / m_{j} \\
v y_{j}^{\prime} & =v x_{j}-J y / m_{j}
\end{array}\right\} \begin{array}{l}
\text { Newton's second law } \\
\text { (momentum form) }
\end{array} \\
& J x=\frac{J \Delta r x}{\sigma}, J y=\frac{J \Delta r y}{\sigma}, J=\frac{2 m_{i} m_{j}(\Delta v \cdot \Delta r)}{\sigma\left(m_{i}+m_{j}\right)} \\
& \begin{array}{l}
\text { impulse due to normal force } \\
\text { (conservation of energy, conservation of momentum) }
\end{array}
\end{aligned}
\]

Initialization. Fill PQ with all potential particle-wall and particle-particle collisions. potential since collision may not happen if some other collision intervenes

Main loop.
- Delete the impending event from PQ (min priority = \(t\) ).
- If the event in no longer valid, ignore it.
- Advance all particles to time t, on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.```

