Linear Programming

Reference: The Allocation of Resources by Linear Programming, Scientific American, by Bob Bland

Robert Sedgewick and Kevin Wayne • Copyright $\Theta 2006$ • http://www.Princeton.EDU/~cos226

Applications

Agriculture. Die† problem.
Computer science. Compiler register allocation, data mining.
Electrical engineering. VLSI design, optimal clocking
Energy. Blending petroleum products.
Economics. Equilibrium theory, two-person zero-sum games.
Environment. Water quality management.
Finance. Portfolio optimization.
Logistics. Supply-chain management.
Management. Hotel yield management.
Marketing. Direct mail advertising.
Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Operations research. Airline crew assignment, vehicle routing
Physics. Ground states of 3-D Ising spin glasses.
Plasma physics. Optimal stellarator design.
Telecommunication. Network design, Internet routing.
Sports. Scheduling ACC basketball, handicapping horse races.

see ORF 307

What is it?

- Quintessential tool for optimal allocation of scarce resources, among a number of competing activities.
- Powerful and general problem-solving method that encompasses:
- shortest path, network flow, MST, matching
- $A x=b, 2$-person zero sum games

Why significant?

- Fast commercial solvers: CPLEX, OSL.
- Powerful modeling languages: AMPL, GAMS.
- Ranked among most important scientific advances of $20^{\text {th }}$ century.
- Widely applicable and dominates world of industry.
\backslash
Ex: Delta claims saving $\$ 100$ million per year using LP

Brewery Problem: A Toy LP Example

Small brewery produces ale and beer

- Production limited by scarce resources: corn, hops, barley malt
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit $(\$)$
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
Limit	480	160	1190	

How can brewer maximize profits?

- Devote all resources to ale: 34 barrels of ale $\Rightarrow \$ 442$
- Devote all resources to beer: 32 barrels of beer $\Rightarrow \$ 736$
- 7.5 barrels of ale, 29.5 barrels of beer $\quad \Rightarrow \$ 776$.
- 12 barrels of ale, 28 barrels of beer
$\Rightarrow \$ 800$.

Brewery Problem

Brewery Problem: Objective Function

Brewery Problem: Feasible Region

Brewery Problem: Geometry

Brewery problem observation. Regardless of objective function coefficients, an optimal solution occurs at an extreme point.

"Standard form" LP.

- Input: real numbers $a_{i j}, c_{j}, b_{i}$.
- Output: real numbers x_{j}.
- $n=\#$ nonnegative variables, $m=\#$ constraints.
- Maximize linear objective function subject to linear inequalities.

```
(P) max }\mp@subsup{\sum}{j=1}{n}\mp@subsup{c}{j}{}\mp@subsup{x}{j}{
    s. t. }\mp@subsup{\sum}{j=1}{n}\mp@subsup{a}{ij}{}\mp@subsup{x}{j}{}=\mp@subsup{b}{i}{}\quad1\leqi\leq
        \mp@subsup{x}{j}{}}\geq0\quad1\leqj\leq
```

(P) $\max c^{T} x$
s.t. $A x=b$
$x \geq 0$
s.t. $A x=b$ $x \geq 0$

Original input.

$$
\begin{array}{rr}
\max \quad 13 A+23 B \\
\text { s.t. } & 5 A+15 B \leq 480 \\
4 A+4 B \leq 160 \\
& 35 A+20 B \leq 1190
\end{array}
$$

Standard form.

- Add slack variable for each inequality.
- Now a 5-dimensional problem.

Geometry

Extreme point property. If there exists an optimal solution to (P), then there exists one that is an extreme point.

Consequence. Only need to consider finitely many possible solutions.
Challenge. Number of extreme points can be exponential!
n-dimensional hypercube

Greedy property. Extreme point is optimal iff no neighboring extreme point is better. local optima are global optima

Simplex algorithm. [George Dantzig, 1947]

- Developed shortly after WWII in response to logistical problems
including Berlin airlift.
- One of greatest and most successful algorithms of all time.

Generic algorithm
never decreasing objective function

- Start at some extreme point.

Pivot from one extreme point to a neighboring one

- Repeat until optimal.

How to implement? Linear algebra.

Simplex Algorithm: Initialization

max Z subject to												$\begin{aligned} & \text { Basis }=\left\{S_{C}, S_{H}, S_{M}\right\} \\ & A=B=0 \end{aligned}$
13A	+	$23 B$						-	Z	=	0	
5A		15B	$+$									$Z=0$
4A	+	$4 B$			+							$S_{C}=480$
35A	+	$20 B$									1190	$S_{\text {H }}=1190$
A		B		S_{C}		S_{H}				\geq	0	

Basis. Subset of m of the n variables
Basic feasible solution (BFS). Set $n-m$ nonbasic variables to 0 , solve for remaining m variables.

- Solve m equations in m unknowns.
- If unique and feasible solution $\Rightarrow B F S$.
- BFS \Leftrightarrow extreme point

Simplex Algorithm: Pivot 1

max Z subject to									
$13 A+23 B$						-	Z	$=$	0
5A	+	$15 B+$						=	480
4A	+	$4 B$	+					=	160
35A	+	20B						=	1190
		B		S_{H}				\geq	0

> Basis $=\left\{S_{C}, S_{H}, S_{M}\right\}$
> $A=B=0$
> $Z=0$
> $S_{C}=480$
> $S_{H}=160$
> $S_{M}=1190$

Substitute: $B=1 / 15\left(480-5 A-S_{C}\right)$

$$
\begin{aligned}
& \text { Basis }=\left\{B, S_{H}, S_{M}\right\} \\
& A=S_{C}=0 \\
& Z=736 \\
& B=32 \\
& S_{H}=32 \\
& S_{M}=550
\end{aligned}
$$

Why pivot on column 2?

- Each unit increase in B increases objective value by $\$ 23$.
- Pivoting on column 1 also OK.

Why pivot on row 2?

- Preserves feasibility by ensuring RHS ≥ 0

Minimum ratio rule: $\min \{480 / 15,160 / 4,1190 / 20\}$

Simplex Algorithm: Optimality

Q. When to stop pivoting?
A. When all coefficients in top row are non-positive.
Q. Why is resulting solution optimal?
A. Any feasible solution satisfies system of equations in tableaux

- In particular: $\mathrm{Z}=800-\mathrm{S}_{\mathrm{C}}-2 \mathrm{~S}_{\mathrm{H}}$
- Thus, optimal objective value $Z^{*} \leq 800$ since $S_{C} S_{H} \geq 0$
- Current BFS has value $800 \Rightarrow$ optimal.

Substitute: $A=3 / 8\left(32+4 / 15 S_{C}-S_{H}\right)$

		-	S_{C}	-	$2 S_{H}$		-	Z	=	-800
	B	+	$\frac{1}{10} S_{C}$	+	$\frac{1}{8} S_{H}$				=	28
A		-	$\frac{1}{10} S_{C}$	$+$	${ }_{8}^{3} S_{H}$				=	12
		-	${ }^{25} S_{C}$	-	$\frac{85}{8} S_{H}$	+	S_{M}		=	110
A	B		S_{C}		S_{H}		S_{M}		\geq	0

Basis $=\left\{A, B, S_{M}\right\}$
$S_{C}=S_{H}=0$
$Z=800$
$B=28$
$A=12$
$S_{M}=110$

Simplex Algorithm: Bare Bones Implementation

Construct the simplex tableaux.


```
public class Simplex 
    private double[][] a; // simplex tableaux
    private int M, N
    public Simplex(double[][] A, double[] b, double[] c) {
        M = b.length;
        N = c.length;
        a = new double [M+1][M+N+1];
        for (int i = 0; i < M; i++)
            for (int j = 0; j < N; j++)
                a[i][j] = A[i][j]
        or (int j = N; j < M + N; j++) a[j-N][j] = 1.0;
        or (int j = 0; j < N; j++) a[M][j] = c[j]
        for (int i = 0; i < M; i++) a[i][M+N] = b[i]
    }
```

```
Pivot on element ( \(p, q\) ).
```



```
public void pivot(int p, int q)
```

public void pivot(int p, int q)
for (int i = 0; i <= M; i++)
for (int i = 0; i <= M; i++)
for (int j = 0; j <= M + N; j++
for (int j = 0; j <= M + N; j++
if (i != p\&\& j != q)
if (i != p\&\& j != q)
a[i][j] -= a[p][j] * a[i][q] / a[p][q]
a[i][j] -= a[p][j] * a[i][q] / a[p][q]
for (int i = 0; i <= M; i++)
for (int i = 0; i <= M; i++)
if (i != p) a[i][q] = 0.0; zero out column q
if (i != p) a[i][q] = 0.0; zero out column q
for (int j = 0; j <= M + N; j++)
for (int j = 0; j <= M + N; j++)
if (j != q) a[p][j] /= a[p][q]; scale row p
if (j != q) a[p][j] /= a[p][q]; scale row p
a[p][q] = 1.0;
a[p][q] = 1.0;
}

```
}
```

Simplex Algorithm: Degeneracy

Degeneracy. New basis, same extreme point.
"stalling" is common in practice

Cycling. Get stuck by cycling through different bases that all correspond to same extreme point.

- Doesn't occur in the wild.
- Bland's least index rule guarantees finite \# of pivots.

```
Simplex algorithm.
```



```
public void solve() {
```

public void solve() {
while (true) {
while (true) {
int p, q;
int p, q;
for (q = 0; q < M + N; q++) find entering variable q
for (q = 0; q < M + N; q++) find entering variable q
if (a [M][q] > 0) break; (positive objective function coefficient)
if (a [M][q] > 0) break; (positive objective function coefficient)
if (q >= M + N) break;
if (q >= M + N) break;
for (p = 0; p < M; p++)
for (p = 0; p < M; p++)
if (a[p][q] > 0) break;
if (a[p][q] > 0) break;
for (int i = p+1; i < M; i++)
for (int i = p+1; i < M; i++)
if (a[i][q] > 0)
if (a[i][q] > 0)
if (a[i][M+N] / a[i][q] < a[p][M+N] / a[p][q])
if (a[i][M+N] / a[i][q] < a[p][M+N] / a[p][q])
p = i;
p = i;
pivot(p, q);
pivot(p, q);
}

```
    }
```


Simplex Algorithm: Running Time

Remarkable property. In practice, simplex algorithm typically terminates after at most $2(m+n)$ pivots.

- No polynomial pivot rule known.
- Most pivot rules known to be exponential (or worse) in worst-case.

Pivoting rules. Carefully balance the cost of finding an entering variable with the number of pivots needed.

Simplex Algorithm: Implementation Issues

Implementation issues.

- Avoid stalling.
- Choosing the pivot.
- Numerical stability. requires fancy data structures
- Maintaining sparsity.
- Detecting infeasiblity
- Detecting unboundedness.
- Preprocessing to reduce problem size

Commercial solvers routinely solve LPs with millions of variables and tens of thousands of constraints.

LP Duality: Economic Interpretation

Brewer's problem. Find optimal mix of beer and ale to maximize profits.

$$
\text { (P) } \begin{aligned}
\max 13 A & +23 B \\
\text { s.t. } 5 A & +15 B \leq 480 \\
4 A & +4 B \leq 160 \\
& 35 A
\end{aligned}
$$

$$
\begin{aligned}
& A^{\star}=12 \\
& B^{\star}=28 \\
& O P T=800
\end{aligned}
$$

Entrepreneur's problem. Buy resources from brewer at min cost.

- $C, H, M=$ unit price for corn, hops, malt.
- Brewer won't agree to sell resources if $5 \mathrm{C}+4 \mathrm{H}+35 \mathrm{M}<13$.

$$
\text { (D) } \begin{aligned}
\min 480 C+160 H+1190 M & \\
\text { s.t. } 5 C+4 H+35 M & \geq 13 \\
15 C+4 H+20 M & \geq 23 \\
C+H & \geq 0
\end{aligned}
$$

AMPL. [Fourer, Gay, Kernighan] An algebraic modeling language.
CPLEX solver. Industrial strength solver.
separate data from model

```
set PROD := beer ale
set INGR := corn hops malt
param:profit :=
ale 13
param: supply :=
lorn 480
lops 160
param amt: ale beer :=
lorn
lol
```

set INGR
param profit \{PROD\};
param supply (INGR)
param amt \{INGR, PROD\}
$\operatorname{var} \mathbf{x}$ \{PROD\} $>=0$.
maximize total_profit
sum $\{j$ in PROD $\} \times[j]$ * profit $[j]$
subject to constraints \{i in INGR\}:
sum $\{j$ in PROD $\} \operatorname{amt}[i, j] * \times[j]<=\operatorname{supply}[i]$;

```
[cos226:tucson] ~> ampl
AMPL Version 20010215 (Sunos 5.7)
ampl: model beer.mod
ampl: solve;
ampl: display x
x [*] := ale 12 beer 28;
```

Primal and dual LPs. Given real numbers $a_{i j}, b_{i}, c_{j}$, find real numbers x_{j}, y_{i} that optimize (P) and (D).

```
(P) max }\mp@subsup{\sum}{j=1}{n}\mp@subsup{c}{j}{}\mp@subsup{x}{j}{
    s. t. }\mp@subsup{\sum}{j=1}{n}\mp@subsup{a}{ij}{}\mp@subsup{x}{j}{}\leq\mp@subsup{b}{i}{}\quad1\leqi\leq
    xj}\geq0\quad1\leqj\leq
```

(D) $\min \sum_{i=1}^{m} b_{i} y_{i}$
s. t. $\begin{aligned} \sum_{i=1}^{m} a_{i j} y_{i} & \geq c_{j} \quad 1 \leq j \leq n \\ y_{i} & \geq 0 \quad 1 \leq i \leq m\end{aligned}$

Duality Theorem. [Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947] If (P) and (D) have feasible solutions, then $\max =\min$.

LP Duality: Sensitivity Analysis
Q. How much should brewer be willing to pay (marginal price) for additional supplies of scarce resources?
A. Corn $\$ 1$, hops $\$ 2$, malt $\$ 0$.
Q. How do I compute marginal prices (dual variables)?
A. Simplex solves primal and dual simultaneously.

1
objective row of final simplex tableaux provides optimal dual solution!
Q. New product "light beer" is proposed. It requires 2 corn, 5 hops, 24 malt. How much profit must be obtained from light beer to justify diverting resources from production of beer and ale?
A. Breakeven: $2(\$ 1)+5(\$ 2)+24(\$ 0)=\$ 12 /$ barrel.
 interior point faster when polyhedron
smooth like disco ball

simplex faster when polyhedron
spiky like quartz crystal
1939. Production, planning. [Kantorovich]
1947. Simplex algorithm. [Dantzig]
1950. Applications in many fields.
1975. Nobel prize in Economics. [Kantorovich and Koopmans]
1979. Ellipsoid algorithm. [Khachian]
1984. Projective scaling algorithm. [Karmarkar]
1990. Interior point methods.

200x. Approximation algorithms, large scale optimization.

Ultimate problem-solving model?

- Shortest path.
- Maximum flow.
- Assignment problem.
- Min cost flow.
tractable
- Multicommodity flow.
- Linear programming.
- Semidefinite programming.
- ...
- Integer programming (or any NP-complete problem).
* intractable (conjectured)

Does $P=N P$? No universal problem-solving model exists unless $P=N P$.

LP is near the deep waters of NP-completeness.

- Solvable in polynomial time.
- Known for ≈ 25 years.

Integer linear programming.

- LP with integrality requirement.
- NP-hard.

An unsuspecting MBA student transitions from tractable LP to
intractable ILP in a single mouse click.

