Geometric Algorithms

Reference: Chapters 24-25, Algorithms in C, $2^{\text {nd }}$ Edition, Robert Sedgewick.

Robert Sedgewick and Kevin Wayne - Copyright $\odot 2006$ - http://www.Princeton.EDU/~cos226

Geometric Primitives

Point: two numbers (x, y). \quad any line not through origin
Line: two numbers a and $b[a x+b y=1]$
Line segment: two points.
Polygon: sequence of points.
Primitive operations.

- Is a point inside a polygon?
- Compare slopes of two lines.
- Distance between two points.
- Do two line segments intersect?
- Given three points p_{1}, p_{2}, p_{3}, is $p_{1}-p_{2}-p_{3}$ a counterclockwise turn?

Other geometric shapes.

- Triangle, rectangle, circle, sphere, cone, ...
- 3D and higher dimensions sometimes more complicated.

Applications.

- Data mining.
- VLSI design.
- Computer vision.
- Mathematical models.
- Astronomical simulation.

airflow around an aircraft wing
- Geographic information systems.
- Computer graphics (movies, games, virtual reality).
- Models of physical world (maps, architecture, medical imaging).
\qquad

History.

- Ancient mathematical foundations.
- Most geometric algorithms less than 25 years old.

Intuition

Warning: intuition may be misleading.

- Humans have spatial intuition in 2D and 3D.
- Computers do not.
- Neither has good intuition in higher dimensions!

Is a given polygon simple?

we think of this

no crossings

1	15	14	13	12	11	10	9	8	7	6	5	4
3	2											
1	2	18	4	18	4	19	4	19	4	20	3	20

$\begin{array}{lllllllllll}1 & 10 & 3 & 7 & 2 & 8 & 8 & 3 & 4 \\ 6 & 5 & 15 & 1 & 11 & & 14 & 2 & 16\end{array}$

algorithm sees this

Jordan curve theorem. [Veblen 1905] Any continuous simple closed curve cuts the plane in exactly two pieces: the inside and the outside.

Is a point inside a simple polygon?

Application. Draw a filled polygon on the screen.

Implementing CCW

CCW. Given three point a, b, and c, is $a-b-c$ a counterclockwise turn?

- Analog of comparisons in sorting.
- Idea: compare slopes.
yes

Lesson. Geometric primitives are tricky to implement.

- Dealing with degenerate cases.
- Coping with floating point precision.

Does line segment intersect ray?

public boolean contains (double $x 0$, double $y 0$) $\{$ int crossings $=0$
for (int $\mathbf{i}=0 ; \mathbf{i}<\mathbf{N} ; \mathbf{i}++$)
double slope $=(\mathbf{y}[\mathbf{i + 1}]-\mathbf{y}[\mathbf{i}]) /(x[i+1]-x[i])$;
boolean cond1 $=(\mathbf{x}[\mathrm{i}]<=\mathbf{x} 0) \& \&(\mathbf{x} 0<\mathbf{x}[\mathrm{i}+1])$; boolean cond1 $=(\mathbf{x}[1]<=\mathbf{x} 0)$ d\& boolean cond2 $=(\mathbf{x}[\mathrm{i}+1]<=\mathbf{x} 0) \& \&(x 0<\mathbf{x}[\mathrm{i}])$; boolean above $=\left(y_{0}<\right.$ slope * $(x 0-x[i])+y[i]$ if ((cond1 || cond2) \&\& above) crossings++;
return (crossings \% 2 != 0);
\}

CCW. Given three point a, b, and c, is $a-b-c$ a counterclockwise turn? - Determinant gives twice area of triangle.

$$
2 \times \operatorname{Area}(a, b, c)=\left|\begin{array}{lll}
a_{x} & a_{y} & 1 \\
b_{x} & b_{y} & 1 \\
c_{x} & c_{y} & 1
\end{array}\right|=\left(b_{x}-a_{x}\right)\left(c_{y}-a_{y}\right)-\left(b_{y}-a_{y}\right)\left(c_{x}-a_{x}\right)
$$

- If area >0 then $a-b-c$ is counterclockwise.

If area < 0 , then $a-b-c$ is clockwise.
If area $=0$, then $a-b-c$ are collinear.


```
public final class Point {
}
```

```
    public final int x;
```

 public final int x;
 public final int y;
 public final int y;
 public Point(int x, int y) { this.x = x; this. y = y; }
 public Point(int x, int y) { this.x = x; this. y = y; }
 public double distanceTo(Point q) {
 public double distanceTo(Point q) {
 return Math.hypot(this.x - q.x, this.y - q.y)
 return Math.hypot(this.x - q.x, this.y - q.y)
 }
 }
 public static int ccw(Point a, Point b, Point c) {
 public static int ccw(Point a, Point b, Point c) {
 double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
 double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
 if (area2 < 0) return -1;
 if (area2 < 0) return -1;
 else if (area2 > 0) return +1
 else if (area2 > 0) return +1
 }
 }
 public static boolean collinear(Point a, Point b, Point c) {
 public static boolean collinear(Point a, Point b, Point c) {
 return ccw(a,b,c) == 0;
 return ccw(a,b,c) == 0;
 }
 }
    ```
            #
```

 #
 }

```

\section*{Convex Hull}

A set of points is convex if for any two points \(p\) and \(q\) in the set, the line segment \(\overline{p q}\) is completely in the set.

Convex hull. Smallest convex set containing all the points.


not convex

\section*{Convex Hull}

Observation 1. Edges of convex hull of \(P\) connect pairs of points in \(P\)
Observation 2. Edge \(\overrightarrow{p q}\) is on convex hull if all other points are counterclockwise of \(\overrightarrow{p q}\).

\(O\left(N^{3}\right)\) algorithm. For all points \(p\) and \(q\) in \(P\), check whether \(\overrightarrow{p q}\) is an edge of convex hull.
\[
\begin{aligned}
& \text { each check requires } O(N) \text { ccw calculations. } \\
& \text { where } N \text { is the number of points in } P
\end{aligned}
\]

\section*{Package Wrap (Jarvis March)}

\section*{Implementation}
- Compute angle between current point and all remaining points.
- Pick smallest angle larger than current angle.
\(\Theta(N)\) per iteration.


Package wrap.
- Start with point with smallest y-coordinate.
- Rotate sweep line around current point in \(c \mathrm{cw}\) direction.
- First point hit is on the hull.
- Repeat


How Many Points on the Hull?

\section*{Parameters}
- \(N=\) number of points
- \(h=\) number of points on the hull.

Package wrap running time. \(\Theta(\mathrm{Nh})\) per iteration

How many points on hull?
- Worst case: h=N.
- Average case: difficult problems in stochastic geometry
in a disc: \(h=N^{1 / 3}\).
- in a convex polygon with \(O(1)\) edges: \(h=\log N\)

Graham scan.
- Choose point \(p\) with smallest \(y\)-coordinate.
- Sort points by polar angle with \(p\) to get simple polygon
- Consider points in order, and discard those that would create a clockwise turn.

\({ }_{17}\)

\section*{Quick Elimination}

Quick elimination.
- Choose a quadrilateral \(Q\) or rectangle \(R\) with 4 points as corners.
- If point is inside, can eliminate.
- 4 ccw tests for quadrilateral
- 4 comparisons for rectangle

Three-phase algorithm
- Pass through all points to compute R.
- Eliminate points inside R.
- Find convex hull of remaining points.


Practice. Can eliminate almost all points in linear time.

\begin{tabular}{|c|c|}
\hline Algorithm & Running Time \\
\hline Package wrap & Nh \\
\hline Graham scan & \(\mathrm{N} \log \mathrm{N}\) \\
\hline Quickhull & \(\mathrm{N} \log \mathrm{N}\) \\
\hline Mergehull & \(\mathrm{N} \log \mathrm{N}\) \\
\hline Sweep line & \(\mathrm{N} \log \mathrm{N}\) \\
\hline Quick elimination & \(\mathrm{N}^{\dagger}\) \\
\hline Best in theory & \(\mathrm{N} \log \mathrm{h}\) \\
\hline
\end{tabular}
asymptotic cost to find h-point hull in N -point set

Models of computation.
- Comparison based: compare coordinates.
(impossible to compute convex hull in this model of computation)
```

(a.x < b.x) || ((a.x == b.x)\&\& (a.y < b.y)))

```
- Quadratic decision tree model: compute any quadratic function of the coordinates and compare against 0 .


Theorem. [Andy Yao, 1981] In quadratic decision tree model any convex hull algorithm requires \(\Omega(N \log N)\) ops.
\[
\begin{aligned}
& \text { even if hull points are not required to be } \\
& \text { output in counterclockwise order }
\end{aligned}
\]

\section*{Closest Pair of Points}


\section*{Closest Pair of Points}

Algorithm.
- Divide: draw vertical line \(L\) so that roughly \(\frac{1}{2} N\) points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions. \({\text { seems like } \theta\left(N^{2}\right)}_{\text {a }}\)


Find closest pair with one point in each side, assuming that distance \(<\delta\).
- Observation: only need to consider points within \(\delta\) of line L.
- Sort points in \(2 \delta\)-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

\({ }^{30}\)

\section*{Closest Pair Algorithm}
```

Closest-Pair(p
Compute separation line L such that half the points
are on one side and half on the other side

```
    \(\delta_{1}=\) Closest-Pair(left half)
    \(\delta_{2}=\) Closest-Pair (right half)
    \(\delta=\min \left(\delta_{1}, \delta_{2}\right)\)
    Delete all points further than \(\delta\) from separation line \(L\)
    Sort remaining points by \(y\)-coordinate.
    Scan points in \(y\)-order and compare distance between
    each point and next 11 neighbors. If any of these
    distances is less than \(\delta\), update \(\delta\).
    return \(\delta\).
\}
\(O(N \log N)\)
\(2 T(N / 2)\)

Def. Let \(s_{i}\) be the point in the \(2 \delta\)-strip, with the \(\mathrm{i}^{\text {th }}\) smallest y -coordinate.

Claim. If \(|i-j| \geq 12\), then the distance between \(s_{i}\) and \(s_{j}\) is at least \(\delta\).
Pf.
- No two points lie in same \(\frac{1}{2} \delta\)-by- \(\frac{1}{2} \delta\) box.
- Two points at least 2 rows apart have distance \(\geq 2\left(\frac{1}{2} \delta\right)\). -

Fact. Still true if we replace 12 with 7.

\({ }_{31}\)

\section*{Closest Pair of Points: Analysis}

Running time.
\[
\mathrm{T}(N) \leq 2 T(N / 2)+O(N \log N) \Rightarrow \mathrm{T}(N)=O\left(N \log ^{2} N\right)
\]


Upper bound. Can be improved to \(O(N \log N)\).
Lower bound. In quadratic decision tree model, any algorithm for closest pair requires \(\Omega(N \log N)\) steps.

\section*{Nearest Neighbor}

\section*{Nearest Neighbor}

Input. N Euclidean points.

Nearest neighbor problem. Given a query point \(p\), which one of original \(N\) points is closest to \(p\) ?


Voronoi region. Set of all points closest to a given point. Voronoi diagram. Planar subdivision delineating Voronoi regions. Fact. Voronoi edges are perpendicular bisector segments.


Voronoi of 2 points (perpendicular bisector)


Voronoi of 3 points (passes through circumcenter)

Voronoi region. Set of all points closest to a given point.
Voronoi diagram. Planar subdivision delineating Voronoi regions.
Fact. Voronoi edges are perpendicular bisector segments.


Toxic waste dump problem. N homes in a region. Where to locate nuclear power plant so that it is far away from any home as possible?
looking for largest empty circle
(center must lie on Voronoi diagram)

Path planning. Circular robot must navigate through environment with N obstacle points. How to minimize risk of bumping into a obstacle?
robot should stay on Voronoi diagram of obstacles

Reference: J. O'Rourke. Computational Geometry.

Quintessential nearest neighbor data structure.

\section*{Voronoi Diagram: More Applications}

Anthropology. Identify influence of clans and chiefdoms on geographic regions. Astronomy. Identify clusters of stars and clusters of galaxies. Biology, Ecology, Forestry. Model and analyze plant competition. Cartography. Piece together satellite photographs into large "mosaic" maps. Crystallography. Study Wigner-Setiz regions of metallic sodium. Data visualization. Nearest neighbor interpolation of 2D data. Finite elements. Generating finite element meshes which avoid small angles. Fluid dynamics. Vortex methods for inviscid incompressible 2D fluid flow. Geology. Estimation of ore reserves in a deposit using info from bore holes. Geo-scientific modeling. Reconstruct 3D geometric figures from points. Marketing. Model market of US metro area at individual retail store level. Metallurgy. Modeling "grain growth" in metal films.
Physiology. Analysis of capillary distribution in cross-sections of muscle tissue.
Robotics. Path planning for robot to minimize risk of collision.
Typography. Character recognition, beveled and carved lettering.
Zoology. Model and analyze the territories of animals.

\section*{Scientific Rediscoveries}
\begin{tabular}{|c|c|c|c|}
\hline Year & Discoverer & Discipline & Name \\
\hline 1644 & Descartes & Astronomy & "Heavens" \\
\hline 1850 & Dirichlet & Math & Dirichlet tesselation \\
\hline 1908 & Voronoi & Math & Voronoi diagram \\
\hline 1909 & Boldyrev & Geology & area of influence polygons \\
\hline 1911 & Thiessen & Meteorology & Thiessen polygons \\
\hline 1927 & Niggli & Crystallography & domains of action \\
\hline 1933 & Wigner-Seitz & Physics & Wigner-Seitz regions \\
\hline 1958 & Frank-Casper & Physics & atom domains \\
\hline 1965 & Brown & Ecology & area of potentially available \\
\hline 1966 & Mead & Ecology & plant polygons \\
\hline 1985 & Hoofd et al. & Anatomy & capillary domains \\
\hline
\end{tabular}


Fortune's algorithm. Sweep-line algorithm can be implemented in \(O(N \log N)\) time.
but very tricky to get right due to
degeneracy and floating point!
\begin{tabular}{|c|c|c|}
\hline Algorithm & Preprocess & Query \\
\hline Brute & 1 & \(N\) \\
\hline Fortune & \(N \log N\) & \(\log N\) \\
\hline
\end{tabular}

\section*{Discretized Voronoi}

Discretized Voronoi. Solve nearest neighbor problem on an N -by- N grid.


Brute force. For each grid cell, maintain closest point. When adding a new point to Voronoi, update \(\mathrm{N}^{2}\) cells.

\section*{Hoff's Algorithm}

Hoff's algorithm. Align apex of a right circular cone with sites.
- Minimum envelope of cone intersections projected onto plane is the Voronoi diagram.
- View cones in different colors \(\Rightarrow\) render Voronoi.


Implementation. Draw cones using standard graphics hardware!

Delaunay triangulation. Triangulation of N points such that no point is inside circumcircle of any other triangle.

Fact 0 . It exists and is unique (assuming no degeneracy).
Fact 1. Dual of Voronoi (connect adjacent points in Voronoi diagram).
Fact 2. No edges cross \(\Rightarrow \mathrm{O}(\mathrm{N})\) edges.
Fact 3. Maximizes the minimum angle for all triangular elements.
Fact 4. Boundary of Delaunay triangulation is convex hull.
Fact 5. Shortest Delaunay edge connects closest pair of points.


Summary. Many fundamental geometric problems require ingenuity to solve large instances.
\begin{tabular}{|c|c|c|}
\hline Problem & Brute & Cleverness \\
\hline convex hull & \(N^{2}\) & \(N \log N\) \\
\hline closest pair & \(N^{2}\) & \(N \log N\) \\
\hline furthest pair & \(N^{2}\) & \(N \log N\) \\
\hline Delaunay triangulation & \(N^{4}\) & \(N \log N\) \\
\hline polygon triangulation & \(N^{2}\) & \(N\) \\
\hline
\end{tabular}```

