
Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Combinatorial Search

2

Overview

Exhaustive search. Iterate through all elements of a search space.

Backtracking. Systematic method for generating all solutions

to a problem, by successively augmenting partial solutions.

Applicability. Huge range of problems (include NP-hard ones).

Caveat. Search space is typically exponential in size !

effectiveness is limited to relatively small instances.

3

Enumerating Subsets

4

Scheduling

Scheduling (set partitioning). Given n jobs of varying length, divide

among two machines to minimize the time the last job finishes.

Remark. NP-hard.

1.41

1.73

2.00

2.23

1

2

3

4

lengthjob

or, equivalently, difference
between finish times

5

Enumerating Subsets: Natural Binary Code

Enumerating subsets. Given n items, enumerate all 2n subsets.

! Count in binary from 0 to 2n - 1.

! Look at binary representation.

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

empty

1

2

2 1

3

3 1

3 2

3 2 1

4

4 1

4 2

4 2 1

4 3

4 3 1

4 3 2

 4 3 2 1

integer machine onebinary code

4 3 2 1

4 3 2

4 3 1

4 3

4 2 1

4 2

4 1

4

3 2 1

3 2

3 1

3

2 1

2

1

empty

machine two

6

Enumerating Subsets: Natural Binary Code

Enumerating subsets. Given n items, enumerate all 2n subsets.

! Count in binary from 0 to 2n - 1.

! Look at binary representation.

long N = 1 << n;

for (long i = 0; i < N; i++) {

 for (int bit = 0; bit < n; bit++) {

 if (((i >> bit) & 1) == 1)

 System.out.print(bit + " ");

 }

 System.out.println();

}

7

Samuel Beckett

Quad. Starting with empty stage, 4 characters enter and exit

one at a time, such that each subset of actors appears exactly once.

ruler function

8

Enumerating Subsets: Binary Reflected Gray Code

Binary reflected Gray code. The n-bit code is:

! the (n-1) bit code with a 0 prepended to each word, followed by

! the (n-1) bit code in reverse order, with a 1 prepended to each word.

9

Beckett: Java Implementation

public static void moves(int n, boolean enter) {

 if (n == 0) return;

 moves(n-1, true);

 if (enter) System.out.println("enter " + n);

 else System.out.println("exit " + n);

 moves(n-1, false);

}

% java Beckett 4

enter 1

enter 2

exit 1

enter 3

enter 1

exit 2

exit 1

enter 4

enter 1

enter 2

exit 1

exit 3

enter 1

exit 2

exit 1

stage directions
for 3-actor play

moves(3, true)

reverse stage directions
for 3-actor play

moves(3, false)

10

More Applications of Gray Codes

3-bit rotary encoder

Chinese ring puzzle

8-bit rotary encoder

11

Scheduling (using Gray Code)

Beckett's
stage directions

gap = sum
+2.23 if job 4 on machine one
-2.23 if job 4 on machine two

flip job 4
from machine one
to machine two

12

Scheduling: Java Implementation

public static void moves(int n, double[] a, double[] b) {

 if (n == 0) return;

 moves(n-1, a, b);

 a[n] = -a[n];

 a[0] += 2*a[n];

 if (Math.abs(a[0]) < Math.abs(b[0]))

 for (int i = 0; i < a.length; i++)

 b[i] = a[i];

 moves(n-1, a, b);

}

current schedule best schedule so far

flip machine for job n ;
check schedule

int[] a = { 7.37, 1.41, 1.73, 2.00, 2.23 };

int[] b = { 7.37, 1.41, 1.73, 2.00, 2.23 };

job lengths

best schedule so far

sum

13

Exploiting Symmetry

Exploit symmetry.

! Half of schedules are redundant.

! Fix job n on machine one ! twice as fast.

14

Space-Time Tradeoff

Space-time tradeoff.

! Enumerate all subsets of first n/2 jobs; sort by gap.

! Enumerate all subsets of last n/2 jobs; for each subset, binary

search to find for best matching subset among first n/2 jobs.

! Reduces running time from 2n to 2n/2 log n by consuming 2n/2 memory.

1.41

1.73

2.00

2.23

1

2

3

4

lengthjob

3.00

0.35

5

6
5.14

(1 2 3)

2.32

(2 3)

1.68

(1 3)

1.14

(1 2)

-1.14

(3)

-1.68

(2)

-2.32

(1)

-5.14

(empty)

5.58

(4 5 6)

1.12

(5 6)

-0.42

(4 6)

4.48

(4 5)

-4.88

(6)

0.42

(5)

-1.12

(4)

-5.58

(empty)

gap

(subset)

gap

(subset)

-5.14

(empty)

-1.14

(3)

1.14

(2)

-5.14

(empty)

5.14

(1 2 3)

-1.14

(3)

1.14

(1 2)

5.14

(1 2 3)

best

match

0.44

(1 2 3)

0.02

(3 5 6)

0.72

(2 4 6)

-0.26

(4 5)

0.26

(1 2 3 6)

-0.72

(3 5)

0.02

(1 2 4)

-0.44

(1 2 3)
gap

15

Enumerating Permutations

16

8-Queens Problem

8-queens problem. Place 8 queens on a chessboard so that

no queen can attack any other queen.

Representation. Can represent solution as a permutation:

q[i] = column of queen in row i.

1 2 3 4 5 6 7 8

int[] q = { 5, 7, 1, 3, 8, 6, 4, 2 };

queens i and j can attack each other if |q[i] + i| = |q[j] + j|

17

Enumerating Permutations

Permutations. Given n items, enumerate all n! permutations.

1 2 3 4

1 2 4 3

1 3 2 4

1 3 4 2

1 4 2 3

1 4 3 2

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

order matters

3 1 2 4

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

3-element permutations 4-element permutations

2 1 3 4

2 1 4 3

2 3 1 4

2 3 4 1

2 4 1 3

2 4 3 1

3 1 2 4

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

3 followed by any
permutation of 1 2 4

1 followed by any
permutation of 2 3 4

2 followed by any
permutation of 1 3 4

3 followed by any
permutation of 1 2 4

18

Enumerating all Permutations

To enumerate all permutations of a set of n elements:

! For each element ai

– put ai first, then append

– a permutation of the remaining elements (a0, …, ai-1, ai+1, …, an-1)

1 2 3 4

1 2 3 4 2 1 3 4 3 2 1 4 4 2 3 1

… … …

2 1 3 4 2 3 1 4 2 4 3 1

2 1 3 4 2 1 4 3

2 1 3 4 2 1 4 3

2 3 1 4 2 3 4 1

2 3 1 4 2 3 4 1

2 4 3 1 2 4 1 3

2 4 3 1 2 4 1 3

19

Enumerating All Permutations: Java Implementation

private static void enumerate(int[] a, int n) {

 int N = a.length;

 if (n == N) printPermutations(a);

 for (int i = n; i < N; i++) {

 swap(q, i, n);

 enumerate(a, n+1);

 swap(q, n, i);

 }

}

permutations of a[n], …, a[N-1]

int N = 4;

int[] a = { 1, 2, 3, 4 };

enumerate(a, N);

cleans up after itself

20

Pruning

21

4-Queens Search Tree

22

4-Queens Search Tree (pruned)

dead end

23

N-Queens: Backtracking Solution

private static void enumerate(int[] q, int n) {

 int N = q.length;

 if (n == N) printQueens(q);

 for (int i = n; i < N; i++) {

 swap(q, i, n);

 if (isConsistent(q, n)) enumerate(q, n+1);

 swap(q, n, i);

 }

}

stop enumerating if adding the nth

queen leads to a violation

int N = 4;

int[] q = { 1, 2, 3, 4 };

enumerate(q, N);

24

Sudoku

25

8

5

2 1

3

4

3 8

1

2 6

9

9 6

7

4

5

7

Sudoku. Fill 9-by-9 grid so that every row, column, and box contains

the digits 1 through 9.

Remark. Natural generalization is NP-hard.

Sudoku

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

26

2 1

7 8

5

3

4

3 8

1

2 6

9

9 6

7

4

5

Sudoku. Fill 9-by-9 grid so that every row, column, and box contains

the digits 1 through 9.

Remark. Natural generalization is NP-hard.

Sudoku

2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

27

Sudoku

Linearize. Treat 9-by-9 array as an array of length 81.

Enumerate all assignments. Count from 0 to 981 - 1 in base 9.

8 67 1 3 4 5 3 8 … 80

2 60 1 3 4 5 7 8 80

8

5

2 1

3

4

3 8

1

2 6

9

9 6

7

4

5

7 2

9 3 4

1 6

9 4 6

5

7 3 8

1 5

6 7 8

2 4 9

1 7

6 9

8 5 2

5 9 3

4 2

6 7

8

1 5 7

4 3

2 3

4 8 1

6 7 5

1 5

3 9

8 2 4

7 8

6 2

9 3 1

using digits 1 to 9

28

Backtracking. Iterate through elements of search space.

! For each empty cell, there are 9 possible choices.

! Make one choice and recur.

! If you reach a contradiction, go back to previous choice,

and make next available choice.

Pruning. Stop as soon as you reach a contradiction.

Improvements.

! Choose most constrained cell to examine next.

! Knuth's "dancing links."

Sudoku: Backtracking Solution

29

Sudoku: Java Implementation

private static void solve(int[] board, int cell) {

 // found the solution

 if (cell == 81) { show(board); return; }

 // skip over cell n since it has fixed value

 if (board[cell] != 0) { solve(board, cell + 1); return; }

 // try all 9 possibilities

 for (int n = 1; n <= 9; n++) {

 if (isConsistent(board, cell, n)) {

 board[cell] = n;

 solve(board, cell + 1);

 }

 }

 board[cell] = 0;

} cleans up after itself

don't bother if a Sudoku constraint
is already violated

int[] board = { 7, 0, 8, 0, 0, 0, 3, … };

solve(board, 0);

30

Enumerating all Paths in a Grid

31

All Paths on a Grid

All paths. Enumerate all simple paths on a grid of adjacent sites.

Application. Self-avoiding lattice walk to model polymer chains.

no atoms can occupy same position at same time

32

Boggle

Boggle. Find all words that can be formed by tracing a simple path of

adjacent cubes (left, right, up, down, diagonal).

Pruning. Stop as soon as no word in dictionary contains string of

letters on current path as a prefix ! use a trie.

B A X X X

X C A C K

X K R X X

X T X X X

X X X X X

B

BA

BAX

33

Boggle: Java Implementation

// find all words starting at (i, j)

private void dfs(String prefix, int i, int j) {

 if (i < 0 || i >= N) return;

 if (j < 0 || j >= N) return;

 if (visited[i][j]) return;

 if (!dictionary.containsAsPrefix(prefix)) return;

 visited[i][j] = true;

 prefix = prefix + board[i][j];

 if (dictionary.contains(prefix))

 found.add(prefix);

 // recur on all 8 neighbors

 for (int ii = -1; ii <= 1; ii++)

 for (int jj = -1; jj <= 1; jj++)

 dfs(prefix, i + ii, j + jj);

 visited[i][j] = false;

}

don't bother continuing
if no possible words

add to set of found words

backtrack

out-of-bounds or
self-intersecting

34

Enumerating all Paths in a Graph

35

Hamilton Path

Hamilton path. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.

visit every edge exactly once

36

Knight's Tour

Knight's tour. Find a sequence of moves for a knight so that, starting

from any square, it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight's graph.

legal knight moves a knight's tour

37

Hamilton Path: Backtracking Solution

Backtracking solution. To find Hamilton path starting at v:

! Add v to current path.

! For each vertex w adjacent to v

– find a simple path starting at w using all remaining vertices

! Remove v from current path.

How to implement?

! To keep track of path: use a stack.

! To record which vertices are on the path: use a boolean array.

! To recursively visit vertices: use depth-first search.

Heuristic. Choose vertex with fewest unvisited neighbors.

38

Hamilton Path: Java Implementation

public class HamiltonPath {

 private boolean[] onPath;

 private Stack<Integer> path = new Stack<Integer>();

 public HamiltonPath(Graph G) {

 onPath = new boolean[G.V()];

 for (int v = 0; v < G.V(); v++)

 dfs(G, v);

 }

 private void dfs(Digraph G, int v) {

 path.push(v);

 onPath[v] = true;

 if (path.size() == G.V()) System.out.println(path);

 for (int w : G.adj(v))

 if (!onPath[w]) dfs(G, w);

 path.pop();

 onPath[v] = false;

 }

}

don't bother further exploration
if w is already on the current path

add v to the current path

remove v from the current path

39

The Longest Path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final.

