4.3 Binary Search Trees

Binary search trees
Randomized BSTs

Symbol table. Key-value pair abstraction.

- Insert a value with specified key.
- Search for value given key.
- Delete value with given key.

Challenge 1. Guarantee symbol table performance.

hashing analysis depends on input distribution

Challenge 2. Expand API when keys are ordered.

find the kth largest

Reference: Chapter 12, Algorithms in Java, 3rd Edition, Robert Sedgewick

Binary Search Trees

Def. A binary search tree is a binary tree in symmetric order

Binary tree is either:

- Empty.
- A key-value pair and two binary trees.

Symmetric order:

- Keys in nodes.
- No smaller than left subtree.
- No larger than right subtree.

Binary Search Trees in Java

A BST is a reference to a node.

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

```
private class Node {
        Key key;
        Val val;
        Val val;
}
Key and Val are generic types:
    Key is Comparable
```



```
public class BST<Key extends Comparable, Val> {
    private Node root
    private class Node {
        private Key key;
        private Val val
        private Node l, r;
        private Node(Key key, Val val) {
            this.key = key
            this.val = val.
        }
    }
```

 private boolean less (Key k1, Key k2) \{ ... \}
 private boolean eq (Key k1, Key k2) \{ ... \}
 public void put(Key key, Val val) \{ ... \}
 public Val get(Key key) \{ ... \}
 \}

Put. Associate val with key

- Search, then insert.
- Concise (but tricky) recursive code.

```
public void put(Key key, Val val) {
    root = insert(root, key, val);
}
private Node insert(Node x, Key key, Val val) {
    if (x == null) return new Node(key, val);
    else if ( eq(key, x.key)) x.val = val.
    else if (less(key, x.key)) x.l = insert(x.l, key, val);
    else
    return x;
}
```

Get. Return val corresponding to given key, or null if no such key.

```
public Val get(Key key) {
```

public Val get(Key key) {
Node x = root;
Node x = root;
while (x != null) {
while (x != null) {
if (eq(key, x.key)) return x.val;
if (eq(key, x.key)) return x.val;
else if (less(key, x.key)) x = x.l
else if (less(key, x.key)) x = x.l
else
else
}
}
return null
return null
}

```
}
```


BST: Construction

Insert the following keys into BST. ASERCHINGXMPL

Tree shape.

- Many BSTs correspond to same input data.
- Cost of search/insert proportional to depth of node.
- 1-1 correspondence between BST and quicksort partitioning.
depth of node corresponds to
depth of function call stack when node is partitioned

Symbol Table: Implementations Cost Summary

	Worst Case			Average Case		
Implementation	Get	Put	Remove	Get	Put	Remove
Sorted array	$\log N$	N	N	$\log N$	N/2	N/2
Unsorted list	N	N	N	N/2	N	N
Hashing	N	1	N	1*	1^{*}	1^{*}
BST	N	N	N	$\log N$	$\log N$???

BST. $O(\log N)$ insert and search if keys arrive in random order.

Theorem. If keys are inserted in random order, height of tree is $\Theta(\log N)$, except with exponentially small probability.
\uparrow

$$
\text { mean } \approx 4.311 \ln N \text {, variance }=O(1)
$$

Property. If keys are inserted in random order, expected number of comparisons for a search/insert is about $2 \ln N$.

But... Worst-case for search/insert/height is N .

```
\
e.g., keys inserted in ascending order
```


BST: Eager Delete

Delete a node in a BST. [Hibbard]

- Zero children: just remove it.
- One child: pass the child up.
- Two children: find the next largest node using right-left^ or left-right*, swap with next largest, remove as above.

zero children

one child

two children

Problem. Eager deletion strategy clumsy, not symmetric. Consequence. Trees not random (!) $\Rightarrow \operatorname{sqrt}(\mathrm{N})$ per op.

Lazy delete. To delete node with a given key, set its value to null
Cost. $O\left(\log N^{\prime}\right)$ per insert, search, and delete, where N^{\prime} is the number of elements ever inserted in the BST.
under random input assumption

Right Rotate, Left Rotate

Two fundamental ops to rearrange nodes in a tree.

- Maintains symmetric order.
- Local transformations, change just 3 pointers.

Worst Case				Average Case			
Implementation	Get	Put	Remove	Get	Put	Remove	
Sorted array	$\log N$	N	N	$\log N$	$N / 2$	$N / 2$	
Unsorted list	N	N	N	$N / 2$	N	N	
Hashing	N	1	N	1^{*}	1^{*}	1^{*}	
BST	N	N	N	$\log N^{\dagger}$	$\log N^{+}$	$\log N^{+}$	

BST. $O(\log N)$ insert and search if keys arrive in random order.
Q. Can we achieve $O(\log N)$ independent of input distribution?

Right Rotate, Left Rotate

Rotation. Fundamental operation to rearrange nodes in a tree.

- Easier done than said.

Root insertion: insert a node and make it the new root.

- Insert using standard BST.

- Rotate it up to the root.

Why bother?

- Faster if searches are for recently inserted keys.
- Basis for advanced algorithms.
private Node rootInsert(Node h, Key key, Val val)
if (h == null) return new Node(key, val);
if (less (key, h.key))
h.l = rootInsert(h.1, key, val);
$\mathrm{h}=\operatorname{rotR}(\mathrm{h})$;
else
h.r $=$ rootInsert(h.r, key, val); $\mathrm{h}=\operatorname{rotL}(\mathrm{h})$;
return h;
\}

Randomized BST

(G)

$\mathrm{S}^{(A)}$
$\mathrm{S}^{(\mathrm{A}} \mathrm{H}^{\mathrm{R}} \mathrm{x}$

Ex. ASERCHINGXMPL

Intuition. If keys are inserted in random order, height is logarithmic.

Idea. When inserting a new node, make it the root (via root insertion) with probability $1 /(N+1)$, and do so recursively.

```
private Node insert(Node h, Key key, Val val)
    if (h == null) return new Node(key, val)
        if (Math.random()*(h.N + 1) < 1)
        else if (less(key, h.key)) h.l = insert(h.l, key, val);
        else h.r = insert(h.r, key, val);
    h.N++;
    return h; maintain size of subtree rooted at h
```

Fact. Tree shape distribution is identical to tree shape of inserting keys in random order.
 out now, no assumption ma

Ex: Insert keys in ascending order.

Property. Always "looks like" random binary tree.

- As before, expected height is $\Theta(\log N)$.
- Exponentially small chance of bad balance.

Implementation. Need to maintain subtree size in each node.

Randomized BST: Delete

Delete. Delete node containing given key; join two broken subtrees.

Goal. Join T_{1} and T_{2}, where all keys in T_{1} are less than all keys in T_{2}.

Delete. Delete node containing given key; join two broken subtrees.

Join. Merge T_{1} (of size N_{1}) and T_{2} (of size N_{2}) assuming all keys in T_{1} are less than all keys in T_{2}.

- Use root of T_{1} as root with probability $N_{1} /\left(N_{1}+N_{2}\right)$, and recursively join right subtree of T_{1} with T_{2}.
- Use root of T_{2} as root with probability $N_{2} /\left(N_{1}+N_{2}\right)$, and recursively join left subtree of T_{2} with T_{1}.

Symbol Table: Implementations Cost Summary

	Worst Case			Average Case		
Implementation	Search	Insent	Delete	Search	Insert	Delete
Sorted array	$\log N$	N	N	$\log N$	N/2	N/2
Unsorted list	N	N	N	N/2	N	N
Hashing	N	1	N	1 *	1^{*}	1^{*}
BST	N	N	N	$\log N^{+}$	$\log N^{+}$	$\log N^{+}$
Randomized BST	$\log N \neq$	$\log N \ddagger$	$\log N^{\ddagger}$	$\log N$	$\log N$	$\log N$
* assumes our hash function can generate random values for all keys \dagger assumes N is the number of keys ever inserted \ddagger assumes system can generate random numbers, randomized guarantee						

Randomized BST. Guaranteed $\log N$ performance!
Next lecture. Can we achieve deterministic guarantee?

Join. Merge T_{1} (of size N_{1}) and T_{2} (of size N_{2}) assuming all keys in T_{1} are less than all keys in T_{2}.

Delete. Delete node containing given key; join two broken subtrees.
Analysis. Running time bounded by height of tree.

Theorem. Tree still random after delete.
Corollary. Expected number of comparisons for a search/insert/delete is $\Theta(\log N)$.

BST: Advanced Operations

Sort. Iterate over keys in ascending order.

- Inorder traversal.
- Same comparisons as quicksort, but pay space for extra links.

Range search. Find all items whose keys are between k_{1} and k_{2}.
Find $\mathrm{k}^{\text {th }}$ largest/smallest. Generalizes PQ .

- Special case: find min, find max.
- Add subtree size to each node.
- Takes time proportional to height of tree.

```
private class Node
    Key key;
    Val val
    Node 1, r
    int N;
}
```


Ceiling. Given key k, return smallest element that is $\geq k$.
Best-fit bin packing heuristic. Insert the item in the bin with
the least remaining space among those that can store the item.
Theorem. [D. Johnson] Best-fit decreasing is guaranteed use at most $11 B / 9+1$ bins, where B is the best possible.

- Within 22% of best possible.
- Original proof of this result was over 70 pages of analysis!

Asymptotic Cost

Implementation	Search	Insert	Delete	Find kth	Sort	Join	Ceil
Sorted array	$\log N$	N	N	$\log N$	N	N	$\log N$
Unsorted list	N	N	N	N	$N \log N$	N	N
Hashing	1^{\star}	1^{\star}	1^{\star}	N	$N \log N$	N	N
BST	N						
Randomized BST	$\log N^{\ddagger}$	$\log N^{\ddagger}$	$\log N^{\ddagger}$	$\log N^{\ddagger}$	N	$\log N^{\ddagger}$	$\log N^{\ddagger}$

