
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

4.3 Binary Search Trees

Reference: Chapter 12, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Binary search trees

Randomized BSTs

2

Symbol Table Challenges

Symbol table. Key-value pair abstraction.

! Insert a value with specified key.

! Search for value given key.

! Delete value with given key.

Challenge 1. Guarantee symbol table performance.

Challenge 2. Expand API when keys are ordered.

find the kth largest

hashing analysis depends on input distribution

3

Binary Search Trees

Def. A binary search tree is a binary tree in symmetric order.

Binary tree is either:

! Empty.

! A key-value pair and two binary trees.

Symmetric order:

! Keys in nodes.

! No smaller than left subtree.

! No larger than right subtree.
A

smaller

B

larger

x

node

51

14 72

33 53 97

6425 43 9984

subtrees

4

Binary Search Trees in Java

A BST is a reference to a node.

A Node is comprised of four fields:

! A key and a value.

! A reference to the left and right subtree.

private class Node {

 Key key;

 Val val;

 Node l, r;

}

smaller

Key and Val are generic types;
Key is Comparable

left right

larger

51

root

14 68

12 54 79

5

Java Implementation of BST: Skeleton

public class BST<Key extends Comparable, Val> {

 private Node root;

 private class Node {

 private Key key;

 private Val val;

 private Node l, r;

 private Node(Key key, Val val) {

 this.key = key;

 this.val = val;

 }

 }

 private boolean less(Key k1, Key k2) { … }

 private boolean eq (Key k1, Key k2) { … }

 public void put(Key key, Val val) { … }

 public Val get(Key key) { … }

}

6

Search

Get. Return val corresponding to given key, or null if no such key.

public Val get(Key key) {

 Node x = root;
 while (x != null) {

 if (eq(key, x.key)) return x.val;

 else if (less(key, x.key)) x = x.l;

 else le ss(key, x.key))x = x.r;

 }

 return null;

}

7

BST: Insert

Put. Associate val with key.

! Search, then insert.

! Concise (but tricky) recursive code.

public void put(Key key, Val val) {

 root = insert(root, key, val);

}

private Node insert(Node x, Key key, Val val) {

 if (x == null) return new Node(key, val);

 else if (eq(key, x.key)) x.val = val;

 else if (less(key, x.key)) x.l = insert(x.l, key, val);

 else less(key, x.key)) x.r = insert(x.r, key, val);

 return x;

}

8

BST: Construction

Insert the following keys into BST. A S E R C H I N G X M P L

9

Tree Shape

Tree shape.

! Many BSTs correspond to same input data.

! Cost of search/insert proportional to depth of node.

! 1-1 correspondence between BST and quicksort partitioning.

99

25

14 72

43 97

5333 84

51 64

51

14 72

33 53 97

6425 43 9984

depth of node corresponds to
depth of function call stack when node is partitioned

10

BST: Analysis

Theorem. If keys are inserted in random order, height of tree

is !(log N), except with exponentially small probability.

Property. If keys are inserted in random order, expected number of

comparisons for a search/insert is about 2 ln N.

But… Worst-case for search/insert/height is N.

e.g., keys inserted in ascending order

mean " 4.311 ln N, variance = O(1)

11

Symbol Table: Implementations Cost Summary

BST. O(log N) insert and search if keys arrive in random order.

Sorted array

Implementation

Unsorted list

BST

log N

Get

N

N

N

Put

N

N

log N

Get

N/2

log N

N/2

Put

N

log N

N/2

Remove

N

???

Worst Case Average Case

N

Remove

N

N

Hashing N 1 1* 1* 1*N

* assumes hash function is random

12

BST: Eager Delete

Delete a node in a BST. [Hibbard]

! Zero children: just remove it.

! One child: pass the child up.

! Two children: find the next largest node using right-left* or

left-right*, swap with next largest, remove as above.

Problem. Eager deletion strategy clumsy, not symmetric.

Consequence. Trees not random (!) # sqrt(N) per op.

zero children one child two children

13

BST: Lazy Delete

Lazy delete. To delete node with a given key, set its value to null.

Cost. O(log N') per insert, search, and delete, where N' is the number

of elements ever inserted in the BST.

99

25

14 72

43 97

5333 84

delete 72

99

25

14

43 97

5333 84

under random input assumption

tombstone

14

Symbol Table: Implementations Cost Summary

BST. O(log N) insert and search if keys arrive in random order.

Q. Can we achieve O(log N) independent of input distribution?

* assumes hash function is random
† assumes N is number of keys ever inserted

Sorted array

Implementation

Unsorted list

BST

log N

Get

N

N

N

Put

N

N

log N

Get

N/2

log N †

N/2

Put

N

log N †

N/2

Remove

N

log N †

Worst Case Average Case

N

Remove

N

N

Hashing N 1 1* 1* 1*N

15

Right Rotate, Left Rotate

Two fundamental ops to rearrange nodes in a tree.

! Maintains symmetric order.

! Local transformations, change just 3 pointers.

y = left(x)

x = right(y) A B

x

C

y

CB

y

A

x

16

Right Rotate, Left Rotate

Rotation. Fundamental operation to rearrange nodes in a tree.

! Easier done than said.

private Node rotR(Node h) {

 Node x = h.l;

 h.l = x.r;

 x.r = h;

 return x;

}

private Node rotL(Node h) {

 Node x = h.r;

 h.r = x.l;

 x.l = h;

 return x;

}

left rotate 'A' right rotate 'S'

17

Recursive BST Root Insertion

Root insertion: insert a node and make it the new root.

! Insert using standard BST.

! Rotate it up to the root.

Why bother?

! Faster if searches are for recently inserted keys.

! Basis for advanced algorithms.

insert G

private Node rootInsert(Node h, Key key, Val val) {

 if (h == null) return new Node(key, val);

 if (less(key, h.key)) {

 h.l = rootInsert(h.l, key, val);

 h = rotR(h);

 }

 else {

 h.r = rootInsert(h.r, key, val);

 h = rotL(h);

 }

 return h;

}

18

BST Construction: Root Insertion

Ex. A S E R C H I N G X M P L

19

Randomized BST

Intuition. If keys are inserted in random order, height is logarithmic.

Idea. When inserting a new node, make it the root (via root insertion)

with probability 1/(N+1), and do so recursively.

Fact. Tree shape distribution is identical to tree shape of

inserting keys in random order.

private Node insert(Node h, Key key, Val val) {

 if (h == null) return new Node(key, val);

 if (Math.random()*(h.N + 1) < 1)

 return rootInsert(h, key, val);

 else if (less(key, h.key)) h.l = insert(h.l, key, val);

 else h.r = insert(h.r, key, val);

 h.N++;

 return h;

}

but now, no assumption made
on the input distribution

maintain size of subtree rooted at h

20

Randomized BST Example

Ex: Insert keys in ascending order.

21

Randomized BST

Property. Always "looks like" random binary tree.

! As before, expected height is !(log N).

! Exponentially small chance of bad balance.

Implementation. Need to maintain subtree size in each node.

22

Delete. Delete node containing given key; join two broken subtrees.

Randomized BST: Delete

W

G

B S

O U

QJ T

LH ZVRP

delete 'S'

23

Delete. Delete node containing given key; join two broken subtrees.

Goal. Join T1 and T2, where all keys in T1 are less than all keys in T2.

Randomized BST: Delete

W

G

B

O U

QJ T

LH ZVRP

T1 T2

24

Randomized BST: Join

Join. Merge T1 (of size N1) and T2 (of size N2) assuming all keys in T1

are less than all keys in T2.

! Use root of T1 as root with probability N1 / (N1 + N2),

and recursively join right subtree of T1 with T2.

! Use root of T2 as root with probability N2 / (N1 + N2),

and recursively join left subtree of T2 with T1.

O U

Q T

RP

T1 T2

O

U

Q T

RP

T1 T2

prob = 7/12

W

ZV

W

ZV

J

LH

J

LH

25

Randomized BST: Join

Join. Merge T1 (of size N1) and T2 (of size N2) assuming all keys in T1

are less than all keys in T2.

! Use root of T1 as root with probability N1 / (N1 + N2),

and recursively join right subtree of T1 with T2.

! Use root of T2 as root with probability N2 / (N1 + N2),

and recursively join left subtree of T2 with T1.

O U

Q T

RP

T1 T2

U

T

T2

prob = 5/12

W

ZV

W

ZV

J

LH

O

T1

Q

RP

J

LH

26

Randomized BST: Delete

Join. Merge T1 (of size N1) and T2 (of size N2) assuming all keys in T1

are less than all keys in T2.

Delete. Delete node containing given key; join two broken subtrees.

Analysis. Running time bounded by height of tree.

Theorem. Tree still random after delete.

Corollary. Expected number of comparisons for a search/insert/delete

is !(log N).

27

Symbol Table: Implementations Cost Summary

Randomized BST. Guaranteed log N performance!

Next lecture. Can we achieve deterministic guarantee?

* assumes our hash function can generate random values for all keys
† assumes N is the number of keys ever inserted
‡ assumes system can generate random numbers, randomized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

log N

Search

N

N

log N ‡

N

Insert

N

N

log N ‡

log N

Search

N/2

log N †

log N

N/2

Insert

N

log N †

log N

N/2

Delete

N

log N †

log N

Worst Case Average Case

N

Delete

N

N

log N ‡

Hashing N 1 1* 1* 1*N

28

BST: Advanced Operations

Sort. Iterate over keys in ascending order.

! Inorder traversal.

! Same comparisons as quicksort, but pay space for extra links.

Range search. Find all items whose keys are between k1 and k2.

Find kth largest/smallest. Generalizes PQ.

! Special case: find min, find max.

! Add subtree size to each node.

! Takes time proportional to height of tree.

B

E

M

P

T

F

H W

V Y

10

4 5

1

1 1 1

32 1

private class Node {

 Key key;

 Val val;

 Node l, r;

 int N;

} subtree size

29

BST: Bin Packing Application

Ceiling. Given key k, return smallest element that is $ k.

Best-fit bin packing heuristic. Insert the item in the bin with

the least remaining space among those that can store the item.

Theorem. [D. Johnson] Best-fit decreasing is guaranteed use

at most 11B/9 + 1 bins, where B is the best possible.

! Within 22% of best possible.

! Original proof of this result was over 70 pages of analysis!

30

Symbol Table: Implementations Cost Summary

* assumes our hash function can generate random values for all keys
‡ assumes system can generate random numbers, randomized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

log N

Search

N

N

log N ‡

N

Insert

N

N

log N ‡

log N

Find kth

N

N

log N ‡

N

Sort

N log N

N

N

N

Join

N

N

log N ‡

Asymptotic Cost

N

Delete

N

N

log N ‡

Hashing 1* 1* N N log N N1*

log N

Ceil

N

N

log N ‡

N

