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4.4  Balanced Trees

Reference:  Chapter 13, Algorithms in Java, 3rd Edition, Robert Sedgewick.
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Symbol Table Review

Symbol table:  key-value pair abstraction.

! Insert a value with specified key.

! Search for value given key.

! Delete value with given key.

Randomized BST.

! O(log N) time per op.  [unless you get ridiculously unlucky]

! Store subtree count in each node.

! Generate random numbers for each insert/delete op.

This lecture.  2-3-4 trees, red-black trees, B-trees.
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2-3-4 Trees
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2-3-4 Tree

2-3-4 tree.  Generalize node to allow multiple keys; keep tree balanced.

Perfect balance.  Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.

! 2-node:  one key, two children.

! 3-node:  two keys, three children.

! 4-node:  three keys, four children.

M O

K R

WC E

< K K — R > R

D F G JA S V Y ZQNL
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2-3-4 Tree:  Search

Search.

! Compare search key against keys in node.

! Find interval containing search key.

! Follow associated link (recursively).
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2-3-4 Tree:  Insert

Insert.

! Search to bottom for key.

! 2-node at bottom:  convert to 3-node.

! 3-node at bottom:  convert to 4-node.

! 4-node at bottom:  ??
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2-3-4 Tree:  Splitting Four Nodes

Transform tree on the way down.

! Ensures last node is not a 4-node.

! Local transformation to split 4-nodes:

Invariant.  Current node is not a 4-node.

Consequence.  Insertion at bottom is easy since it's not a 4-node.
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2-3-4 Tree:  Splitting a Four Node

Ex.  To split a four node, move middle key up.
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2-3-4 Tree

Tree grows up from the bottom.
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10

2-3-4 Tree:  Balance

Property.  All paths from root to leaf have same length.

Tree height.

! Worst case: lg N   [all 2-nodes]

! Best case: log4 N = 1/2 lg N   [all 4-nodes]

! Between 10 and 20 for a million nodes.

! Between 15 and 30 for a billion nodes.
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2-3-4 Tree:  Implementation?

Direct implementation.  Complicated because of:

! Maintaining multiple node types.

! Implementation of getChild().

! Large number of cases for split().

private void insert(Key key, Val val) {

   Node x = root;

   while (x.getChild(key) != null) {

      x = x.getChild(key);

      if (x.is4Node()) x.split();

   }

   if      (x.is2Node()) x.make3Node(key, val);

   else if (x.is3Node()) x.make4Node(key, val);

}

fantasy code
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Symbol Table:  Implementations Cost Summary

Note.  Comparison within nodes not accounted for.

*  assumes hash map is random for all keys
†  N is the number of nodes ever inserted
‡  probabilistic guarantee
§  amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N  ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N †

log N

log N §

N

Insert

1

log N †

log N

log N §

N

Delete

1

log N †

log N

log N §

Worst Case Average Case

2-3-4 log N log N log N log N log N

N

Delete

1

N

log N ‡

log N §

log N

Hashing N 1 1* 1* 1*N
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Red-Black Trees
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Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.
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Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.
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Red-Black Tree:  Splitting Nodes

Two easy cases.  Switch colors.

Two hard cases.  Use rotations.

do single rotation

do double rotation
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Red-Black Tree:  Splitting Nodes

right rotate R   !

left rotate E   !

change colors

inserting G
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Red-Black Tree:  Insertion

E
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Red-Black Tree:  Balance

Property A.  Every path from root to leaf has same number of black links.

Property B.  At most one red link in-a-row.

Property C.  Height of tree is less than 2 lg N + 2.
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Symbol Table:  Implementations Cost Summary

Note.  Comparison within nodes are accounted for.

*  assumes hash map is random for all keys
†  N is the number of nodes ever inserted
‡  probabilistic guarantee
§  amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N  ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N †

log N

log N §

N

Insert

1

log N †

log N

log N §

N

Delete

1

log N †

log N

log N §

Worst Case Average Case

Red-Black log N log N log N log N log N

N

Delete

1

N

log N ‡

log N §

log N

Hashing N 1 1* 1* 1*N
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Red-Black Trees:  Practice

Red-black trees vs. splay trees.

! Fewer rotations than splay trees.

! One extra bit per node for color.

Red-black trees vs. hashing.

! Hashing code is simpler and usually faster:

arithmetic to compute hash vs. comparison.

! Hashing performance guarantee is weaker.

! BSTs have more flexibility and can support wider range of ops.

In the wild.  Red-black trees are widely used as system symbol tables.

! Java:  java.util.TreeMap, java.util.TreeSet.

! C++ STL:  map, multimap, multiset.

! Linux kernel:  linux/rbtree.h.

possible to eliminate

at most 2 per insertion
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B-Trees
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B-Tree

B-Tree.  Generalizes 2-3-4 trees by allowing up to M links per node.

Main application:  file systems.

! Reading a page into memory from disk is expensive.

! Accessing info on a page in memory is free.

! Goal:  minimize # page accesses.

! Node size M = page size.

Space-time tradeoff.

! M large  "   only a few levels in tree.

! M small  "   less wasted space.

! Typical M = 1000,  N < 1 trillion.

Bottom line.  Number of page accesses is logMN per op.

3 or 4 in practice!
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B-Tree Example

M = 5

Page

insert 275
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B-Tree Example (cont)
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Symbol Table:  Implementations Cost Summary

B-Tree.  Number of page accesses is logMN per op.

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N  ‡

log N §

N

Insert

N

N

log N ‡

log N §

log N

Search

N

log N †

log N §

log N §

N / 2

Insert

N

log N †

log N §

log N §

N / 2

Delete

N

log N †

log N §

log N §

Worst Case Average Case

Red-Black log N § log N § log N § log N § log N §

N

Delete

N

N

log N ‡

log N §

log N §

B-Tree 1 1 1 1 11

page accesses

Hashing N 1 1* 1* 1*N

effectively a constant
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B-Trees in the Wild

Variants.

! B trees:  Bayer-McCreight.  [1972, Boeing]

! B+ trees:  all data in external nodes.

! B* trees:  keeps pages at least 2/3 full.

! R-trees for spatial searching:  GIS, VLSI.

File systems.

! Windows:  HPFS.

! Mac:  HFS, HFS+.

! Linux:  ReiserFS, XFS, Ext3FS, JFS.

Databases.

! Most common index type in modern databases.

! ORACLE, DB2, INGRES, SQL, PostgreSQL, …
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Summary

Goal.  ST implementation with log N guarantee for all ops.

! Probabilistic:  randomized BST.

! Amortized:  splay tree.

! Worst-case:  red-black tree.

! Algorithms are variations on a theme:  rotations when inserting.

Abstraction extends to give search algorithms for huge files.

! B-tree.
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Splay Trees
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Splay Trees

Splay trees = self-adjusting BST.

! Tree automatically reorganizes itself after each op.

! After inserting x or searching for x, rotate x up to root using

double rotations.

! Tree remains "balanced" without explicitly storing any balance

information.

Amortized guarantee:  any sequence of N ops, starting from empty

splay tree, takes O(N log N) time.

! Height of tree can be N.

! Individual op can take linear time.
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A Self-Adjusting Tree
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Splay Trees

Splay.

! Check two links above current node.

! ZIG-ZAG:  if orientations differ, same as root insertion.

! ZIG-ZIG:   if orientations match, do top rotation first.

ZIG-ZAG

B C

y
D

z

x

DC

z

y

A

BA

x
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Splay Trees

Splay.

! Check two links above current node.

! ZIG-ZAG:  if orientations differ, same as root insertion.

! ZIG-ZIG:   if orientations match, do top rotation first.

ZIG-ZIG

A B

x
C

y
D

z

DC

z
B

y
A

x

ZAG-ZAG
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Splay Trees

Splay.

! Check two links above current node.

! ZIG-ZAG:  if orientations differ, same as root insertion.

! ZIG-ZIG:   if orientations match, do top rotation first.

Root = Splay Root Insertion Splay Insertion
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Splay Example

Search for 1.
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Splay Example

Search for 1.
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Splay Example

Search for 1.
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Splay Example

Search for 1.
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Splay Example

Search for 1.

ZIG
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5
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Splay Example

Search for 1.
1

10

8
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Splay Example

Search for 2.

1
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8

96

7

2

3

4

5

2

8

4

63

10

1

9

5 7

Splay(2)

42

Splay Trees

Intuition.

! Splay rotations halve search path.

! Reduces length of path for many other nodes in tree.

insert 1, 2, …, 40

search 1

search 2

search 3

search 4

insert 1, 2, …, 40

search for
random key
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Symbol Table:  Implementations Cost Summary

Splay:   Sequence of N ops takes linearithmic time.

Ahead:  Can we do all ops in log N time guaranteed?

*  assumes we know location of node to be deleted
†  if delete allowed, insert/search become sqrt(N)
‡  probabilistic guarantee
§  amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N  ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N

log N

log N §

N

Insert

1

log N

log N

log N §

N

Delete

1

sqrt(N) †

log N

log N §

Worst Case Average Case

N

Delete

1

N

log N ‡

log N §

Hashing N 1 1* 1* 1*N


