
Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

4.4 Balanced Trees

Reference: Chapter 13, Algorithms in Java, 3rd Edition, Robert Sedgewick.

2

Symbol Table Review

Symbol table: key-value pair abstraction.

! Insert a value with specified key.

! Search for value given key.

! Delete value with given key.

Randomized BST.

! O(log N) time per op. [unless you get ridiculously unlucky]

! Store subtree count in each node.

! Generate random numbers for each insert/delete op.

This lecture. 2-3-4 trees, red-black trees, B-trees.

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

2-3-4 Trees

4

2-3-4 Tree

2-3-4 tree. Generalize node to allow multiple keys; keep tree balanced.

Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.

! 2-node: one key, two children.

! 3-node: two keys, three children.

! 4-node: three keys, four children.

M O

K R

WC E

< K K — R > R

D F G JA S V Y ZQNL

5

2-3-4 Tree: Search

Search.

! Compare search key against keys in node.

! Find interval containing search key.

! Follow associated link (recursively).

M O

K R

WC E

< K K — R > R

D F G JA S V Y ZQNL

6

2-3-4 Tree: Insert

Insert.

! Search to bottom for key.

! 2-node at bottom: convert to 3-node.

! 3-node at bottom: convert to 4-node.

! 4-node at bottom: ??

M O

K R

WC E

< K K — R > R

D F G JA S V Y ZQNL

7

2-3-4 Tree: Splitting Four Nodes

Transform tree on the way down.

! Ensures last node is not a 4-node.

! Local transformation to split 4-nodes:

Invariant. Current node is not a 4-node.

Consequence. Insertion at bottom is easy since it's not a 4-node.

8

2-3-4 Tree: Splitting a Four Node

Ex. To split a four node, move middle key up.

A-C

K Q W

D

E-J L-P R-V X-Z

A-C

K

D Q

E-J L-P R-V X-Z

W

9

2-3-4 Tree

Tree grows up from the bottom.

E

A

P

E

X

M

L

10

2-3-4 Tree: Balance

Property. All paths from root to leaf have same length.

Tree height.

! Worst case: lg N [all 2-nodes]

! Best case: log4 N = 1/2 lg N [all 4-nodes]

! Between 10 and 20 for a million nodes.

! Between 15 and 30 for a billion nodes.

11

2-3-4 Tree: Implementation?

Direct implementation. Complicated because of:

! Maintaining multiple node types.

! Implementation of getChild().

! Large number of cases for split().

private void insert(Key key, Val val) {

 Node x = root;

 while (x.getChild(key) != null) {

 x = x.getChild(key);

 if (x.is4Node()) x.split();

 }

 if (x.is2Node()) x.make3Node(key, val);

 else if (x.is3Node()) x.make4Node(key, val);

}

fantasy code

12

Symbol Table: Implementations Cost Summary

Note. Comparison within nodes not accounted for.

* assumes hash map is random for all keys
† N is the number of nodes ever inserted
‡ probabilistic guarantee
§ amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N †

log N

log N §

N

Insert

1

log N †

log N

log N §

N

Delete

1

log N †

log N

log N §

Worst Case Average Case

2-3-4 log N log N log N log N log N

N

Delete

1

N

log N ‡

log N §

log N

Hashing N 1 1* 1* 1*N

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Red-Black Trees

14

Red-Black Tree

Represent 2-3-4 tree as a BST.

! Use "internal" edges for 3- and 4- nodes.

! Correspondence between 2-3-4 trees and red-black trees.

red glue

not 1-1 because 3-nodes swing either way.

15

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

16

Red-Black Tree: Splitting Nodes

Two easy cases. Switch colors.

Two hard cases. Use rotations.

do single rotation

do double rotation

17

Red-Black Tree: Splitting Nodes

right rotate R !

left rotate E !

change colors

inserting G

18

Red-Black Tree: Insertion

E

A

P

E

X

M

L

19

Red-Black Tree: Balance

Property A. Every path from root to leaf has same number of black links.

Property B. At most one red link in-a-row.

Property C. Height of tree is less than 2 lg N + 2.

20

Symbol Table: Implementations Cost Summary

Note. Comparison within nodes are accounted for.

* assumes hash map is random for all keys
† N is the number of nodes ever inserted
‡ probabilistic guarantee
§ amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N †

log N

log N §

N

Insert

1

log N †

log N

log N §

N

Delete

1

log N †

log N

log N §

Worst Case Average Case

Red-Black log N log N log N log N log N

N

Delete

1

N

log N ‡

log N §

log N

Hashing N 1 1* 1* 1*N

21

Red-Black Trees: Practice

Red-black trees vs. splay trees.

! Fewer rotations than splay trees.

! One extra bit per node for color.

Red-black trees vs. hashing.

! Hashing code is simpler and usually faster:

arithmetic to compute hash vs. comparison.

! Hashing performance guarantee is weaker.

! BSTs have more flexibility and can support wider range of ops.

In the wild. Red-black trees are widely used as system symbol tables.

! Java: java.util.TreeMap, java.util.TreeSet.

! C++ STL: map, multimap, multiset.

! Linux kernel: linux/rbtree.h.

possible to eliminate

at most 2 per insertion

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

B-Trees

23

B-Tree

B-Tree. Generalizes 2-3-4 trees by allowing up to M links per node.

Main application: file systems.

! Reading a page into memory from disk is expensive.

! Accessing info on a page in memory is free.

! Goal: minimize # page accesses.

! Node size M = page size.

Space-time tradeoff.

! M large " only a few levels in tree.

! M small " less wasted space.

! Typical M = 1000, N < 1 trillion.

Bottom line. Number of page accesses is logMN per op.

3 or 4 in practice!

24

B-Tree Example

M = 5

Page

insert 275

25

B-Tree Example (cont)

26

Symbol Table: Implementations Cost Summary

B-Tree. Number of page accesses is logMN per op.

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N ‡

log N §

N

Insert

N

N

log N ‡

log N §

log N

Search

N

log N †

log N §

log N §

N / 2

Insert

N

log N †

log N §

log N §

N / 2

Delete

N

log N †

log N §

log N §

Worst Case Average Case

Red-Black log N § log N § log N § log N § log N §

N

Delete

N

N

log N ‡

log N §

log N §

B-Tree 1 1 1 1 11

page accesses

Hashing N 1 1* 1* 1*N

effectively a constant

27

B-Trees in the Wild

Variants.

! B trees: Bayer-McCreight. [1972, Boeing]

! B+ trees: all data in external nodes.

! B* trees: keeps pages at least 2/3 full.

! R-trees for spatial searching: GIS, VLSI.

File systems.

! Windows: HPFS.

! Mac: HFS, HFS+.

! Linux: ReiserFS, XFS, Ext3FS, JFS.

Databases.

! Most common index type in modern databases.

! ORACLE, DB2, INGRES, SQL, PostgreSQL, …

28

Summary

Goal. ST implementation with log N guarantee for all ops.

! Probabilistic: randomized BST.

! Amortized: splay tree.

! Worst-case: red-black tree.

! Algorithms are variations on a theme: rotations when inserting.

Abstraction extends to give search algorithms for huge files.

! B-tree.

Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.Princeton.EDU/~cos226

Splay Trees

30

Splay Trees

Splay trees = self-adjusting BST.

! Tree automatically reorganizes itself after each op.

! After inserting x or searching for x, rotate x up to root using

double rotations.

! Tree remains "balanced" without explicitly storing any balance

information.

Amortized guarantee: any sequence of N ops, starting from empty

splay tree, takes O(N log N) time.

! Height of tree can be N.

! Individual op can take linear time.

31

A Self-Adjusting Tree

32

Splay Trees

Splay.

! Check two links above current node.

! ZIG-ZAG: if orientations differ, same as root insertion.

! ZIG-ZIG: if orientations match, do top rotation first.

ZIG-ZAG

B C

y
D

z

x

DC

z

y

A

BA

x

33

Splay Trees

Splay.

! Check two links above current node.

! ZIG-ZAG: if orientations differ, same as root insertion.

! ZIG-ZIG: if orientations match, do top rotation first.

ZIG-ZIG

A B

x
C

y
D

z

DC

z
B

y
A

x

ZAG-ZAG

34

Splay Trees

Splay.

! Check two links above current node.

! ZIG-ZAG: if orientations differ, same as root insertion.

! ZIG-ZIG: if orientations match, do top rotation first.

Root = Splay Root Insertion Splay Insertion

35

Splay Example

Search for 1.
10

9

8

7

6

5

4

3

2

1

ZIG-ZIG

36

Splay Example

Search for 1.
10

9

8

7

6

5

4

1

2

3

ZIG-ZIG

37

Splay Example

Search for 1.
10

9

8

7

6

1

2

3

4

5

ZIG-ZIG

38

Splay Example

Search for 1.
10

9

8

1

6

7

2

3

4

5

ZIG-ZIG

39

Splay Example

Search for 1.

ZIG

10

1

8

96

7

2

3

4

5

40

Splay Example

Search for 1.
1

10

8

96

7

2

3

4

5

41

Splay Example

Search for 2.

1

10

8

96

7

2

3

4

5

2

8

4

63

10

1

9

5 7

Splay(2)

42

Splay Trees

Intuition.

! Splay rotations halve search path.

! Reduces length of path for many other nodes in tree.

insert 1, 2, …, 40

search 1

search 2

search 3

search 4

insert 1, 2, …, 40

search for
random key

43

Symbol Table: Implementations Cost Summary

Splay: Sequence of N ops takes linearithmic time.

Ahead: Can we do all ops in log N time guaranteed?

* assumes we know location of node to be deleted
† if delete allowed, insert/search become sqrt(N)
‡ probabilistic guarantee
§ amortized guarantee

Sorted array

Implementation

Unsorted list

BST

Randomized BST

Splay

log N

Search

N

N

log N ‡

log N §

N

Insert

1

N

log N ‡

log N §

log N

Search

N

log N

log N

log N §

N

Insert

1

log N

log N

log N §

N

Delete

1

sqrt(N) †

log N

log N §

Worst Case Average Case

N

Delete

1

N

log N ‡

log N §

Hashing N 1 1* 1* 1*N

