Analysis of Algorithms

As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time? - Charles Babbage

Charles Babbage (1864)

Analytic Engine (schematic)

Robert Sedgewick and Kevin Wayne · Copyright © 2005 · http://www.Princeton.EDU/~cos226

Overview

Analysis of algorithms. Framework for comparing algorithms and predicting performance.

Scientific method.

- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate the theory by repeating the previous steps until the hypothesis agrees with the observations.

Universe = computer itself.

Case Study: Sorting

Sorting problem:

- Given N items, rearrange them in ascending order.
- Applications: statistics, databases, data compression, computational biology, computer graphics, scientific computing, ...

Insertion Sort

Insertion sort.

- Brute-force sorting solution.
- Move left-to-right through array.
- Exchange next element with larger elements to its left, one-by-one.

 $\left|\right|$

Insertion Sort: Observation

Observe and tabulate running time for various values of N.

• Data source: N random numbers between 0 and 1.

N	Comparisons
5,000	6.2 million
10,000	25 million
20,000	99 million
40,000	400 million
80,000	16 million

Insertion Sort: Experimental Hypothesis

5

7

Data analysis. Plot # comparisons vs. input size on log-log scale.

Insertion Sort: Prediction and Verification

Experimental hypothesis. # comparisons $\approx N^2/4$.

Prediction. 400 million comparisons for N = 40,000.

Observations.	N	Comparisons	
	40,000	401.3 million	
	40,000	399.7 million	Agrees
	40,000	401.6 million	
	40,000	400.0 million	

Comparisons

9.997 billion

Prediction. 10 billion comparisons for N = 200,000.

Observation.	Ν
	200,000

Agrees.

Insertion Sort: Theoretical Hypothesis

Experimental hypothesis.

- Measure running times, plot, and fit curve.
- Model useful for predicting, but not for explaining.

Theoretical hypothesis.

- Analyze algorithm to estimate # comparisons as a function of:
 - number of elements N to sort
 - average or worst case input
- Model useful for predicting and explaining.
- Model is independent of a particular machine or compiler.

Difference. Theoretical model can apply to machines not yet built.

Insertion Sort: Theoretical Hypothesis

Worst case. [descending]

- Iteration i requires i comparisons.
- Total = 0 + 1 + 2 + ... + N-2 + N-1 = N (N-1) / 2.

Average case. [random]

9

11

- Iteration i requires i/2 comparisons on average.
- Total = 0 + 1/2 + 2/2 + ... + (N-1)/2 = N (N-1) / 4.

Α	С	D	F	Н	J	Е	В	I	G
						i			

Insertion Sort: Theoretical Hypothesis

Theoretical hypothesis.

Analysis	Input	Comparisons	Stddev
Worst	Descending	N² / 2	-
Average	Random	N² / 4	1/6 N ^{3/2}
Best	Ascending	N	-

Validation. Theory agrees with observations.

Insertion Sort: Observation

Observe and tabulate running time for various values of N.

- Data source: N random numbers between 0 and 1.
- Machine: Apple G5 1.8GHz with 1.5GB memory running OS X.

N	Comparisons	Time
5,000	6.2 million	0.13 seconds
10,000	25 million	0.43 seconds
20,000	99 million	1.5 seconds
40,000	400 million	5.6 seconds
80,000	16 million	23 seconds
200,000	10 billion	145 seconds

Insertion Sort: Experimental Hypothesis

Data analysis. Plot time vs. input size on log-log scale.

Regression. Fit line through data points \approx a N^b. Hypothesis. Running time grows <u>quadratically</u> with input size.

Measuring Running Time

Factors that affect running time.

- Machine.
- . Compiler.
- Algorithm.
- . Input data.

More factors.

- Caching.
- Garbage collection.
- Just-in-time compilation.
- CPU used by other processes.

Bottom line. Often hard to get precise measurements.

Timing in Java

Wall clock. Measure time between beginning and end of computation.

- Manual: Skagen wristwatch.
- Automatic: Stopwatch.java library.

<pre>Stopwatch.tic();</pre>
<pre>double elapsed = StopWatch.toc();</pre>
<pre>public class Stopwatch { private static long start; public static void tic() { start = System.currentTimeMillis(); } public static double toc() { long stop = System.currentTimeMillis(); return (stop - start) / 1000.0; } }</pre>
}

Summary

14

16

Analysis of algorithms. Framework for comparing algorithms and predicting performance.

Scientific method.

13

15

- . Observe some feature of the universe.
- . Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate the theory by repeating the previous steps until the hypothesis agrees with the observations.

Remaining question. How to formulate a hypothesis?

Types of Hypotheses

How To Formulate a Hypothesis

Worst case running time. Obtain bound on running time of algorithm on any input of a given size N.

- Generally captures efficiency in practice.
- . Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard to accurately model real instances by random distributions.
- May perform poorly on other distributions.

Amortized running time. Worst-case bound on running time of any sequence of N operations.

Robert Sedgewick and Kevin Wayne · Copyright © 2005 · http://www.Princeton.EDU/~cos226

Estimating the Running Time

Total running time: sum of cost × frequency for all of the basic ops.

- Cost depends on machine, compiler.
- Frequency depends on algorithm, input.

Cost for sorting.

- A = # exchanges.
- B = # comparisons.
- Cost on a typical machine = 11A + 4B.

Frequency of sorting ops.

- N = # elements to sort.
- Selection sort: A = N-1, B = N(N-1)/2.

1974 Turing Award

19

Asymptotic Running Time

An easier alternative.

- (i) Analyze asymptotic growth as a function of input size N.
- (ii) For medium N, run and measure time.
- (iii) For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.

- Estimate as a function of input size N.
 - N, N log N, N², N³, 2^N, N!
- Ignore lower order terms and leading coefficients.
 Ex. 6N³ + 17N² + 56 is asymptotically proportional to N³

Big Oh Notation

Big Theta, Oh, and Omega notation.

- $\Theta(N^2)$ means { N², 17N², N² + 17N^{1.5} + 3N, ... }
 - ignore lower order terms and leading coefficients
- $O(N^2)$ means { N^2 , $17N^2$, N^2 + $17N^{1.5}$ + 3N, $N^{1.5}$, 100N, ... }
 - $\Theta(\mathsf{N}^2)$ and smaller
 - use for upper bounds
- $\Omega(N^2)$ means { $N^2,\,17N^2,\,N^2$ + $17N^{1.5}$ + 3N, $\,N^3,\,100N^5,\,...$ } $\Theta(N^2)$ and larger
 - use for lower bounds

Never say: insertion sort makes at least $O(N^2)$ comparisons.

Run time in nanoseconds>		1.3 N ³	10 N ²	47 N log ₂ N	48 N
	1000	1.3 seconds	10 msec	0.4 msec	0.048 msec
ïme to solve a roblem of size	10,000	22 minutes	1 second	6 msec	0.48 msec
	100,000	15 days	1.7 minutes	78 msec	4.8 msec
	million	41 years	2.8 hours	0.94 seconds	48 msec
	10 million	41 millennia	1.7 weeks	11 seconds	0.48 seconds
	second	920	10,000	1 million	21 million
ax size roblem solved	minute	3,600	77,000	49 million	1.3 billion
	hour	14,000	600,000	2.4 trillion	76 trillion

2.9 million

100

Reference: More Programming Pearls by Jon Bentley

41,000

1,000

Orders of Magnitude

Seconds	Equivalent	Meters P Second		Imperial Units	Example
1	1 second	10-10	1.2	in / decade	Continental drift
10	10 seconds	10-8	1	ft / year	Hair growing
10²	1.7 minutes	10-6		.4 in / day	Glacier
10 ³	17 minutes	10-4		, 2 ft / hour	Gastro-intestinal tract
10 ⁴	2.8 hours	10-2	2	ft/minute	Ant
10 ⁵	1.1 days	1		2 mi / hour	Human walk
106	1.6 weeks	10 ²	22	0 mi / hour	Propeller airplane
107	3.8 months	104	37	70 mi / min	Space shuttle
10 ⁸	3.1 years	106		20 mi / sec	Earth in galactic orbit
10 ⁹	3.1 decades	108		000 mi / sec	1/3 speed of light
1010	3.1 centuries		01,		-,
	forever		210	thousand	
4017	age of	Powers of 2	2 ²⁰	million	
1017	universe		2 ³⁰	billion	

Constant Time

Linear time. Running time is O(1).

Elementary operations.

day

N multiplied by 10, time multiplied by

Function call.

р

Μ

21

23

- Boolean operation.
- Arithmetic operation.
- Assignment statement.
- Access array element by index.

Reference: More Programming Pearls by Jon Bentley

1,800 trillion

10

22

50 trillion

10+

Why It Matters

```
Logarithmic Time
```

Logarithmic time. Running time is O(log N).

Searching in a sorted list. Given a sorted array of items, find index of guery item.

O(log N) solution. Binary search.

```
public static int binarySearch(String[] a, String key) {
    int left = 0;
    int right = a.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        int cmp = key.compareTo(a[mid]);
        if (cmp < 0) right = mid - 1;
        else if (cmp > 0) left = mid + 1;
        else return mid;
    }
    return -1;
}
```

Linear Time

Linear time. Running time is O(N).

Find the maximum. Find the maximum value of N items in an array.

```
double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++) {
    if (a[i] > max)
        max = a[i];
}
```

Linearithmic Time

Linearithmic time. Running time is O(N log N).

Sorting. Given an array of N elements, rearrange in ascending order.

O(N log N) solution. Mergesort. [stay tuned]

Remark. $\Omega(N \log N)$ comparisons required. [stay tuned]

Quadratic Time

Quadratic time. Running time is $O(N^2)$.

Closest pair of points. Given N points in the plane, find closest pair.

 $O(N^2)$ solution. Enumerate all pairs of points.

```
double min = Double.POSITIVE_INFINITY;
for (int i = 0; i < N; i++) {
   for (int j = i+1; j < N; j++) {
      double dx = (x[i] - x[j]);
      double dy = (y[i] - y[j]);
      if (dx*dx + dy*dy < min)
           min = dx*dx + dy*dy;
   }
}
```

Remark. $\Omega(N^2)$ seems inevitable, but this is just an illusion.

25

Exponential Time

Summary of Common Hypotheses

Exponential time. Running time is $O(a^N)$ for some constant a > 1.

Finbonacci sequence: 1 1 2 3 5 8 13 21 34 55 ...

$O(\phi^N)$ solution. Spectacularly inefficient!

 $\phi = \frac{1}{2} (1 + \sqrt{5}) = 1.618034....$

public static	int F(int N) {		
if (n == 0	n == 1) return	n;	
else	return	F(n-1)	+ F(n-2);
}			

Complexity	Description	When N doubles, running time
1	Constant algorithm is independent of input size.	does not change
log N	Logarithmic algorithm gets slightly slower as N grows.	increases by a constant
N	Linear algorithm is optimal if you need to process N inputs.	doubles
N log N	Linearithmic algorithm scales to huge problems.	slightly more than doubles
N ²	Quadratic algorithm practical for use only on relatively small problems.	quadruples
2 ^N	Exponential algorithm is not usually practical.	squares!