

Writing Portable Programs

Prof. David August COS 217

Goals of Today's Class

- Writing portable programs in C
 - Sources of heterogeneity
 - Data types, evaluation order, byte order, char set, \dots
- Reading period and final exam
 - Important dates
 - Practice exams
- Lessons from COS 217
 - -Course wrap-up

The Real World is Heterogeneous

- Multiple kinds of hardware
 - -32-bit Intel Architecture
 - -64-bit IA, PowerPC, Sparc, MIPS, Arms, ...
- Multiple operating systems
 - Linux
 - -Windows, Mac, Sun, AIX, ...
- Multiple character sets
 ASCII
 - -ASCII
 - Latin-1, unicode, ...
- Multiple byte orderings
 - Little endian
 - Big endian

Portability

- Goal: run program on any other system
 - Do not require any modifications to the program at all
 - Simply recompile the program, and run
 - Program should continue to perform correctly
 - Ideally, the program should perform well, too.
- Portability is hard to achieve
 - -Wide variation in computing platforms
 - -Patches and releases are frequent operations
- Normally, portability is difficult to achieve
 - Still, good to make programs as portable as possible
 - -This requires extra care in writing and testing code

Programming Language

- Stick to the standard
 - Program in a high-level language and stay within the language standard
 - -However, the standard may be incomplete
 - E.g., char type in C and C++ may be signed or unsigned
- Program in the mainstream
 - Mainstream implies the established style and use
 - Program enough to know what compilers commonly do
 - Difficult for large languages such as C++
- Beware of language trouble spots
 - Some features are intentionally undefined to give compiler implementers flexibility

Size of Data Types

- What are the sizes of char, short, int, long, float and double in C and C++?
 - -char has at least 8 bits, short and int at least 16 bits
 - -sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤
 sizeof(long)
 - -sizeof(float)≤sizeof(double)
- In Java, sizes are defined
 - -byte: 8 bits
 - -char: 16 bits
 - -short: 16 bits
 - -int: 32 bits
 - -long: 64 bits
- Our advice: always use sizeof() to be safe

Order of Evaluation

- Order of evaluation may be ambiguous
 - -strings[i] = names[++i];
 - i can be incremented before or after indexing strings!
 - -printf("%c %c\n", getchar(), getchar());
 - The second character in stdin can be printed first!
- What are the rules in C and C++?
 - Side effects and function calls must be completed at ";"
 - -&& and || execute left to right, only as far as necessary
- What about Java?
 - Expressions including side effects evaluated left to right
- Our advice: do not depend on the order of evaluation in an expression

Characters Signed or Unsigned?

- Char type may be signed or unsigned – Either a 7-bit or an 8-bit character
- Code that is *not* portable

```
int i;
char s[MAX+1];
for (i = 0; i < MAX; i++)
    if ((s[i] = getchar()) == `\n') ||
        (s[i] == EOF))
        break;
s[i] = `\0';
```

• If char is unsigned -s[i] is 255, but EOF is -1 -Hence, the program will hang!

Portable Version Using Integers

Solution

- -Use an integer to store the output of getchar()
- Portable C code

```
int c, i;
char s[MAX+1];
for (i = 0; i < MAX; i++) {
   if ((c = getchar()) == ' (n') ||
       (c == EOF))
     break:
   s[i] = c;
s[i] = \langle 0';
```

Alignment of Structures and Unions 👼

- Structure consisting of multiple elements

```
struct Foo {
   char x;
   int y;
```

- Items are laid out in the order of declaration
- But, the alignment is undefined
 - -There might be holes between the elements
 - -E.g., y may be 2, 4, or 8 bytes from x

Other C Language Issues

Arithmetic or logical shift

- -C: signed quantities with >> may be arithmetic or logical
 - What is "-3 >> 1"?
 - Does it shift-in a sign bit (i.e., a 1) or a 0?
- Java: >> for arithmetic right shift, and >>> for logical
- Byte order
 - -Byte order within short, int, and long is not defined

Use Standard Libraries

10

- Pre-ANSI C may have calls not supported in ANSI С
 - Program will break if you continue use them
 - -Header files can pollute the name space
- Consider the signals defined
 - -ANSI C defines 6 signals
 - -POSIX defines 19 signals
 - Most UNIX defines 32 or more
- Take a look at /usr/include/*.h to see the conditional definitions

Avoid Conditional Compilation

• Writing platform-specific code is possible

some common code #ifdef MAC

#else #ifdef WINDOWSXP

••

. . .

#endif

#endif

- But, #ifdef code is difficult to manage
 - Platform-specific code may be all over the place
 - -Plus, each part requires separate testing

Data Exchange

13

- Use ASCII text
 - -Binary is often not portable
- Still need to be careful
 - -But, even with text, not all systems are the same
 - Windows systems use '\r' or '\n' to terminate a line
 - UNIX uses only 'n'
 - Example
 - Use Microsoft Word and Emacs to edit files
 - CVS assumes all lines have been changed and will merge incorrectly
 - Use standard interfaces which will deal CRLF (carriagereturn and line feed) and newline in a consistent manner

Isolation

• Common feature may not always work: Life is hard

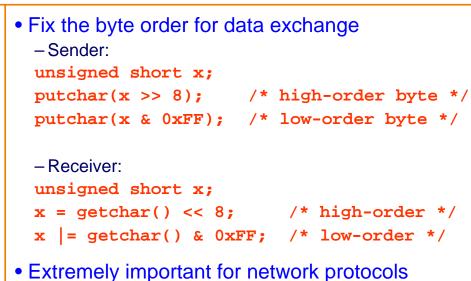
- Localize system dependencies in separate files
 - Separate file to wrap the interface calls for each system
 - Example: unix.c, windows.c, mac.c, ...
- Hide system dependencies behind interfaces
 - Abstraction can serve as the boundary between portable and non-portable components
- Java goes one big step further
 - -Virtual machine which abstracts the entire machine
 - Independent of operating systems and the hardware

Byte Order: Big and Little Endian

14

- Example interaction between two machines
 - -One process writes a short to outbound socket: unsigned short x;
 - x = 0x1000;

write(sockOut, &x, sizeof(x));


-Later, another process reads it from inbound socket: unsigned short x;

read(sockIn, &x, sizeof(x));

• What is the value of \mathbf{x} after reading?

Byte Order Solutions

More on Byte Order

• Language solution

- Java has a serializable interface that defines how data items are packed
- C and C++ require programmers to deal with the byte order

• Binary files vs. text files

- -Binary mode for text files
 - No problem on UNIX
 - Windows will terminate reading once it sees Ctrl-Z as input

Internationalization

17

19

- Don't assume ASCII
 - Many countries do not use English
 - -Asian languages use 16 bits per character
- Standardizations
 - -Latin-1 augments ASCII by using all 8 bits
 - Unicode uses 16 bits per character
 - -Java uses Unicode as its native character set for strings
- Issues with Unicode
 - Byte order issue!
 - Solution: use UTF-8 as an intermediate representation or define the byte order for each character

Summary on Portability

18

• Language

- Don't assume char signed or unsigned
- -Always use ${\tt sizeof}$ () to compute the size of types
- Don't depend on the order of evaluation of an expression
- -Beware of right shifting a signed value
- Make sure that the data type is big enough
- Use standard interfaces
 - $\, \text{Use}$ the common features where possible
 - Provide as much isolation as possible
- Byte order – Fix byte order for data exchange
- Internationalization

 Don't assume ASCII and English

Important Dates

- Tuesday January 16 (Dean's Date) – Execution Profiler Assignment due
- Final Exam
 - -DATE: 01/25/2007
 - -START TIME: 9:00 AM
 - -LOCATION: Friend Center 101
 - Open books, notes, slides, mind, etc.
 - A little secret...

Practice Final Exams

- Go online for old exams and answers
- We recommend you take some practice exams
 - And then look at the answers afterwards
 - -Note that some material differs from term to term
- Also, ask questions about the practice exams
 - -On the listserv
 - -To me or preceptor, in person
 - -To each other

Wrap Up: Goals of COS 217

21

23

- Understand boundary between code and computer
 - Machine architecture
 - Operating systems
 - Compilers
- Learn C and the Unix development tools
 - -C is widely used for programming low-level systems
 - Unix has a rich development environment
 - Unix is open and well-specified, good for study & research
- Improve your programming skills
 - More experience in programming
 - Challenging and interesting programming assignments
 - Emphasis on modularity and debugging

Relationship to Other Courses

22

- Machine architecture
 - -Logic design (306) and computer architecture (471)
 - -COS 217: assembly language and basic architecture
- Operating systems
 - Operating systems (318)
 - -COS 217: virtual memory, system calls, and signals
- Compilers
 - Compiling techniques (320)
 - COS 217: compilation process, symbol tables, assembly and machine language
- Software systems
 - Numerous courses, independent work, etc.
 - -COS 217: programming skills, UNIX tools, and ADTs ²

Lessons About Computer Science

Modularity

- -Well-defined interfaces between components
- Allows changing the implementation of one component without changing another
- The key to managing complexity in large systems
- Resource sharing
 - Time sharing of the CPU by multiple processes
 - Sharing of the physical memory by multiple processes
- Indirection
 - Representing address space with virtual memory
 - Manipulating data via pointers (or addresses)

Lessons Continued

• Hierarchy

- -Memory: registers, cache, main memory, disk, tape, ...
- -Balancing the trade-off between fast/small and slow/big
- Bits can mean anything
 - -Code, addresses, characters, pixels, money, grades, ...
 - -Arithmetic is just a lot of logic operations
 - The meaning of the bits depends entirely on how they are accessed, used, and manipulated
- Capturing a human's intent is really hard
 - Precise specification of a problem is challenging
 - $-\operatorname{Correct}$ and efficient implementation of a solution is, too

25

