
1

Computer Security

Prof. David August

COS 217

2

Interacting with the world

Hardware

OS Kernel

User
Process

User
Process

Internet

Keypress goes
to OS kernel

OS looks up which
window has
“keyboard focus,”
routes to
appropriate user
process’s stdin

User process does
fprintf (asks OS to
write to disk)

OS writes to disk

TCP packet goes to
OS kernel

OS looks up which
process is listening
on that port, sends
data to stdin

User process does
fprintf (asks OS to
write to disk)

OS writes to disk

3

Protection mechanisms

Keypress goes
to OS kernel

OS looks up which
window has
“keyboard focus,”
routes to
appropriate user
process’s stdin

User process does
fprintf (asks OS to
write to disk)

OS writes to disk

TCP packet goes to
OS kernel

OS looks up which
process is listening
on that port, sends
data to stdin

User process does
fprintf (asks OS to
write to disk)

OS writes to disk

• Not to user
process directly!

• Not to
unauthorized user
process!

• User process can’t
access disk directly!

• OS writes only to
files that user
process has
privileges to open!

4

What prevents user process from
directly accessing keyboard & disk?
• Input/output instructions are privileged instructions,

attempting to execute them in unprivileged mode will result
in trap to operating system

• Input/output device registers may be memory-mapped;
virtual-memory system doesn’t map those pages into user
space

• Virtual-memory system prevents user process from
modifying OS memory (can’t fool OS into performing
unauthorized services)

• Virtual-memory prevents user processes from modifying
each others’ memory (can’t fool other process into writing
bad data to its files on disk)

5

How attackers defeat protection
• Make the protection mechanism fail

o (exploit bugs in protection software)

• Operate politely through the protection mechanism,
manipulate semantics of application to obtain services
o (exploit bad design of application)

6

A nice little program
% a.out

What is your name?

John Smith

Thank you, John Smith.

%

#include <stdio.h>
int main(int argc, char **argv) {
char buffer[30]; int i;
printf(“What is your name?\n”);
for (i=0; ; i++) {

int c = getchar();
if (c==‘\n’ || c ==EOF) break;
a[i] = c;

}
a[i]=’\0’;
printf(“Thank you, %s.\n”,a);
return 0;

}

7

Why did this program crash?
% a.out

What is your name?

adsli57asdkhj5jklds;ahj5;klsaduj5klysdukl5aujksd5ukals;5uj;akukla

Segmentation fault

%

#include <stdio.h>
int main(int argc, char **argv) {
char buffer[30]; int i;
printf(“What is your name?\n”);
for (i=0; ; i++) {

int c = getchar();
if (c==‘\n’ || c ==EOF) break;
a[i] = c;

}
a[i]=‘\0’;
printf(“Thank you, %s.\n”,a);
return 0;

}

8

Stack frame layout

%EBP

2

%ESP

Saved
Registers

argc

argv

a n h o J

i m S _

? \0 h t

Local

variables

Parameters

10i

% a.out

What is your name?

John Smith

Thank you, John Smith.

%

#include <stdio.h>
int main(int argc, char **argv) {
char buffer[30]; int i;
printf(“What is your name?\n”);
for (i=0; ; i++) {

int c = getchar();
if (c==‘\n’ || c ==EOF) break;
a[i] = c;

}
a[i]=‘\0’;
printf(“Thank you, %s.\n”,a);
return 0;

}

Old EBP

Old EIP

9

Buffer overrun

%EBP

117

%ESP

Saved
Registers

argc

argv

a d c b a

h g f e

l k j i

Local

variables

Parameters

21i

% a.out

What is your name?

abcdefghijklmnopqrstu

Segmentation fault

%

#include <stdio.h>
int main(int argc, char **argv) {
char buffer[30]; int i;
printf(“What is your name?\n”);
for (i=0; ; i++) {

int c = getchar();
if (c==‘\n’ || c ==EOF) break;
a[i] = c;

}
a[i]=‘\0’;
printf(“Thank you, %s.\n”,a);
return 0;

}

Old EBP

Old EIP

p o n m

t s r q

u

10

Innocuous? buffer overrun

%EBP

1

%ESP

Saved
Registers

argc

argv

a d c b a

h g f e

l k j i

Local

variables

Parameters

21i

% a.out

What is your name?

abcdefghijkl????!!!!^A

%

#include <stdio.h>
int main(int argc, char **argv) {
char buffer[30]; int i;
printf(“What is your name?\n”);
for (i=0; ; i++) {

int c = getchar();
if (c==‘\n’ || c ==EOF) break;
a[i] = c;

}
a[i]=‘\0’;
printf(“Thank you, %s.\n”,a);
return 0;

}

Old EBP

Old EIP

? ? ? ?

! ! ! !

^A

11

Buffer overrun

%EBP

executable
machine

code
. . .

argc

argv

a d c b a

h g f e

l k j i

Local

variables

Parameters

21i

% a.out

What is your name?

abcdefghijkl????&&&&executable-machine-code...

How may I serve you, master?

%

Old EBP

Old EIP

? ? ? ?

& & & &

Cleverly malicious?
Maliciously clever?

#include <stdio.h>
int main(int argc, char **argv) {
char buffer[30]; int i;
printf(“What is your name?\n”);
for (i=0; ; i++) {

int c = getchar();
if (c==‘\n’ || c ==EOF) break;
a[i] = c;

}
a[i]=‘\0’;
printf(“Thank you, %s.\n”,a);
return 0;

}

12

Buffer-overrun vulnerabilities

Hardware

OS Kernel

E-mail
client

Web
Browser

Internet

Keypress goes
to OS kernel

OS looks up which
window has
“keyboard focus,”
routes to
appropriate user
process’s stdin

User process does
fprintf (asks OS to
write to disk)

OS writes to disk

TCP packet goes to
OS kernel

OS looks up which
process is listening
on that port, sends
data to stdin

User process does
fprintf (asks OS to
write to disk)

OS writes to disk

13

Attacking a web server

Web Server
Client PC

for(i=0;p[i];i++)
url[i]=p[i];

• URLs

• Input in web forms

• Crypto keys for SSL

• etc.

14

Attacking a web browser

Web Server
@ badguy.com

Client PC

for(i=0;p[i];i++)
gif[i]=p[i];

• HTML keywords

• Images

• Image names

• URLs

• etc.

www.badguy.com

Earn $$$ Thousands
working at home!

15

Attacking everything in sight

The Internet
@ badguy.com

Client PC

for(i=0;p[i];i++)
gif[i]=p[i];

• E-mail client

• PDF viewer

• Operating-system kernel

• TCP/IP stack

• Any application that ever sees input directly from the outside

16

Your programming assignment
% a.out

What is your name?

John Smith

Thank you, John Smith.
I recommend that you get a grade of D on this assignment

%

char grade = 'D';
int main(void) {
printf("What is your name?\n");
readString(Name);
if (strcmp(Name,"Andrew Appel")==0)

grade='B';
printf("Thank you, %s.\n\

I recommend that you get a grade of %c \
on this assignment.\n", Name, grade);

exit(0);
}

17

OK, that’s a B...
% a.out

What is your name?

John Smith\0.?Ak7@*&%}

Thank you, John Smith.
I recommend ... a grade of B ...

%

char grade = 'D';
int main(void) {
printf("What is your name?\n");
readString(Name);
if (strcmp(Name,"Andrew Appel")==0)

grade='B';
printf("Thank you, %s.\n\

I recommend ... grade of %c \
...nment.\n", Name, grade);

exit(0);
}

%EBP

%ESP

Saved
Registers

buf
Local

variables

Parameters

i

Old EBP

Old EIP

7 k A ?

n h o J

i m S

. \0 h t

} % * @

7 k A ?

18

How about an A?
% a.out

What is your name?

John Smith\0.?7k7@*&%}3k1n1l5018

Thank you, John Smith.
I recommend ... a grade of A ...

%

char grade = 'D';
int main(void) {
printf("What is your name?\n");
readString(Name);
if (strcmp(Name,"Andrew Appel")==0)

grade='B';
printf("Thank you, %s.\n\

I recommend ... grade of %c \
...nment.\n", Name, grade);

exit(0);
}

%EBP

%ESP

buf
Local

variables

Parameters

i

Old EBP

Old EIP

7 k A ?

n 1 k 3

n h o J

i m S

. \0 h t

} % * @

7 k 7 ?

new
machine
code

19

A simpler solution
% a.out < getA

What is your name?
Thank you, John Smith.
I recommend ... a grade of A ...

%

char grade = 'D';
int main(void) {
printf("What is your name?\n");
readString(Name);
if (strcmp(Name,"Andrew Appel")==0)

grade='B';
printf("Thank you, %s.\n\

I recommend ... grade of %c \
...nment.\n", Name, grade);

exit(0);
}

%EBP

%ESP

buf

i

Old EBP

Old EIP

7 k A ?

n h o J
i m S
. \0 h t

} % * @

grade=’A’
jmp

20

The file getA
% a.out < getA

What is your name?
Thank you, John Smith.
I recommend ... a grade of A ...

%

7 k A ?

n h o J
i m S
. \0 h t

} % * @

grade=’A’
jmp

getA:
John Smith\0.movl ‘A’,grade; jmp wherever0000?Ak7@*%}

Size of buffer

Unchanged “old EBP”

new “old EIP” (return address)

New machine code

21

What value to use for new return address?

%EBP

%ESP

buf

i

Old EBP

Old EIP

7 k A ?

n h o J
i m S
. \0 h t

} % * @

grade=’A’
jmp

} % * @getA:
John Smith\0.movl ‘A’,grade; jmp wherever0000?Ak7@*%}

Size of buffer

Unchanged “old EBP”

new “old EIP” (return address)

New machine code

• Computers are deterministic

• Operating system initializes stack pointer to
predictable value

• Stack grows deterministic amount from
process entry to call of readString

22

Use gdb to find out

%EBP

%ESP

0030a898

bfffbb64

bfffbad8

080484c3

08049770

00000001

00000007

0030a898

bfffbb64

00000001

buf

i

Old EBP

Old EIP

% gdb a.out
GNU gdb Red Hat Linux
Copyright 2004 Free Software Foundation
(gdb) break readString
Breakpoint 1 at 0x804843d
(gdb) run
Starting program: a.out
(no debugging symbols found)...
What is your name?
Breakpoint 1, 0x0804843d in readString ()
(gdb) x/10x $esp
0xbfffbab0: 0x0030a898 0xbfffbb64

0xbfffbad8 0x080484c3
0xbfffbac0: 0x08049770 0x00000001

0x00000007 0x0030a898
0xbfffbad0: 0xbfffbb64 0x00000001
(gdb)

23

Defenses against this attack

• Best: program in languages that make array-out-of-bounds
impossible (Java, C#, ML,)

• Good: use discipline in C programming always to check
bounds of array subscripts

• Better than nothing: Operating system randomizes initial
stack pointer

Can jump anywhere in here, so don’t
have to know exact value of stack pointer

oHow to attack it:
John Smith\0.....nop;nop;nop;nop;...;nop;do_bad_things;exit(0)

24

Defenses against this attack

• Best: program in languages that make array-out-of-bounds
impossible (Java, C#, ML,)

• Good: use discipline in C programming always to check
bounds of array subscripts

• Better than nothing: Operating system randomizes initial
stack pointer

oHow to attack it:
John Smith\0.....nop;nop;nop;nop;...;nop;do_bad_things;exit(0)

For this assignment, you don’t need such a fancy attack.

The hello.c program copies the buffer to the global bss data
space (into the Name array) so you can just jump there, don’t
have to know the stack height.

25

Defenses against this attack
• Best: program in languages that make array-out-of-bounds impossible (Java,

C#, ML,)

• Good: use discipline in C programming always to check bounds of array
subscripts

• Better than nothing: Operating system randomizes initial stack pointer

• Better than nothing: Prohibit execution of machine code
from the stack and data segments

• Problem 1: backward compatibility

• Problem 2: need VM hardware with “exec/noexec” bit on
a page by page basis; x86/Pentium family lacks this

• Amazing hack solution: use obsolete “segment
registers” left over from 80286.

26

Segment register defense
• In normal (modern) usage, all segment registers point to

entire range of addressable memory, 0 to 0xffffffff

Text

Data

BSS

Stack

Heap

Code
Stack
Heap
etc

• Amazing hack is to have code
segment point just to Text area

• Problem: what if program
wishes to create executable code
on the fly? dynamic code

• Solution: undo protection

27

At your service...
• For your convenience in this programming assignment, we

have turned off the segment-register defense

char grade = 'D';
int main(void) {

mprotect(((unsigned)Name) & 0xfffff000,1,
PROT_READ | PROT_WRITE | PROT_EXEC);

printf("What is your name?\n");
readString(Name);
if (strcmp(Name,"Andrew Appel")==0)

grade='B';
printf("Thank you, %s.\n\

I recommend ... grade of %c \
...nment.\n", Name, grade);

exit(0);
}

28

How to get started
To succeed on this programming assignment,

• Use gdb to map out where things are
o Stack frame of “readString”
o Stack frame of “main” underneath it
o Global data area containing “grade” and “Name”
o Machine code for “main”
Take notes of all these things, by address.

• Write a little assembly-language program
o Set the “grade” variable to ‘A’; jump to wherever
o Assemble it, maybe even link it into a copy of hello.c, and examine

what it looks like using gdb

• Prepare your attack data
o I found it helpful to write a C program to print out the data string
o useful functions: printf, putchar, putw

29

Start early

• Use gdb to map out where things are
o Stack frame of “readString”
o Stack frame of “main” underneath it
o Global data area containing “grade” and “Name”
o Machine code for “main”
Take notes of all these things, by address.

If possible, get this part done by the time your Weds/Thurs
precept meets this week. Feel free to work jointly with
another student on this part. Bring your notes with you
to precept.

	Computer Security
	Interacting with the world
	Protection mechanisms
	What prevents user process from �directly accessing keyboard & disk?
	How attackers defeat protection
	A nice little program
	Why did this program crash?
	Stack frame layout
	Buffer overrun
	Innocuous? buffer overrun
	Buffer overrun
	Buffer-overrun vulnerabilities
	Attacking a web server
	Attacking a web browser
	Attacking everything in sight
	Your programming assignment
	OK, that’s a B...
	How about an A?
	A simpler solution
	The file getA
	What value to use for new return address?
	Use gdb to find out
	Defenses against this attack
	Defenses against this attack
	Defenses against this attack
	Segment register defense
	At your service...
	How to get started
	Start early

