
1

Scoping and Testing

Prof. David August

COS 217

2

Overview of Today’s Lecture
• Scoping of variables

o Local or automatic variables
o Global or external variables
o Where variables are visible

• Testing of programs
o Identifying boundary conditions
o Debugging the code and retesting

3

Global Variables
• Functions can use global variables defined outside

and above them

int stack[100];

int main(void) {
. . . stack is in scope

}

int sp;

void push(int x) {
. . . stack, sp are in scope

}

4

Definition vs. Declaration
• Definition

o Where a variable is created and assigned storage

• Declaration
o Where the nature of a variable is stated, but no storage allocated

• Global variables
o Defined once (e.g., “int stack[100]”)
o Declared where needed (e.g., “extern int stack[]”)

– Only needed if the function does not appear after the definition
– Convention is to define global variables at the start of the file

5

Local Variables and Parameters
• Functions can define local variables

o Created upon entry to the function
o Destroyed upon departure and value not retained across calls

– Exception: “static” storage class (see chapter 4 of K&R)

• Function parameters behave like initialized local variables
o Values copied into “local variables”
o C is pass by value (so must use pointers to do “pass by reference”)

6

Local Variables & Parameters
• Function parameters and local definitions

“hide” outer-level definitions (gcc -Wshadow)

int x, y;

. . .

void f(int x, int a) {
int b;
. . .
y = x + a * b;
if (. . .) {

int a;
. . .
y = x + a * b;

}
}

different x

same y

different a

7

Local Variables & Parameters
• Cannot declare the same variable twice in one scope

void f(int x) {
int x; error!
. . .

}

8

Scope Example
int a, b;

int main (void) {
a = 1; b = 2;
f(a);
print(a, b);
return 0;

}

void f(int a) {
a = 3;
{

int b = 4;
print(a, b);

}
print(a, b);
b = 5;

}

9

Scope: Another Example

#include “interface.h”

int A;
int B;

void f(int C) {
int D;
if (...) {

int E;
...

}
}

void g(...) {
int H;

...
}

#include “interface.h”

int J;

void m(...) {
int K;
...

}

void g(...) {
int H;

...
}

extern int A;

void f(int C);

interface.h

module1.c module2.c

10

Scope: A

#include “interface.h”

int A;
int B;

void f(int C) {
int D;
if (...) {

int E;
...

}
}

void g(...) {
int H;

...
}

#include “interface.h”

int J;

void m(...) {
int K;
...

}

void g(...) {
int H;

...
}

extern int A;

void f(int C);

interface.h

module1.c module2.c

11

Scope: B

#include “interface.h”

int A;
int B;

void f(int C) {
int D;
if (...) {

int E;
...

}
}

void g(...) {
int H;

...
}

#include “interface.h”

int J;

void m(...) {
int K;
...

}

void g(...) {
int H;

...
}

extern int A;

void f(int C);

interface.h

module1.c module2.c

12

Scope: C

#include “interface.h”

int A;
int B;

void f(int C) {
int D;
if (...) {

int E;
...

}
}

void g(...) {
int H;

...
}

#include “interface.h”

int J;

void m(...) {
int K;
...

}

void g(...) {
int H;

...
}

extern int A;

void f(int C);

interface.h

module1.c module2.c

13

Scope: D

#include “interface.h”

int A;
int B;

void f(int C) {
int D;
if (...) {

int E;
...

}
}

void g(...) {
int H;

...
}

#include “interface.h”

int J;

void m(...) {
int K;
...

}

void g(...) {
int H;

...
}

extern int A;

void f(int C);

interface.h

module1.c module2.c

14

Scope: E

#include “interface.h”

int A;
int B;

void f(int C) {
int D;
if (...) {

int E;
...

}
}

void g(...) {
int H;

...
}

#include “interface.h”

int J;

void m(...) {
int K;
...

}

void g(...) {
int H;

...
}

extern int A;

void f(int C);

interface.h

module1.c module2.c

15

Scope: Keeping it Simple
• Avoid duplicate variable names

o Don’t give a global and a local variable the same name
o But, duplicating local variables across different functions is okay

– E.g., array index of i in many functions

• Avoid narrow scopes
o Avoid defining scope within just a portion of a function

– Even though this reduces the storage demands somewhat

• Use narrow scopes judiciously
o Avoid re-defining same/close names in narrow scopes

• Define global variables at the start of the file
o Makes them visible to all functions in the file
o Though, avoiding global variables whenever possible is useful

16

Scope and Programming Style
• Avoid using same names for different purposes

o Use different naming conventions for globals and locals
o Avoid changing function arguments
o But, duplicating local variables across different functions is okay

– E.g., array index of i in many functions

• Define global variables at the start of the file
o Makes them visible to all functions in the file

• Use function parameters rather than global variables
o Avoids misunderstood dependencies
o Enables well-documented module interfaces

• Declare variables in smallest scope possible
o Allows other programmers to find declarations more easily
o Minimizes dependencies between different sections of code

17

Testing

Chapter 6 of “The Practice of Programming”

18

"On two occasions I have been asked [by members of Parliament!],
`Pray, Mr. Babbage, if you put into the machine wrong figures, will
the right answers come out?' I am not able rightly to apprehend the
kind of confusion of ideas that could provoke such a question."

-- Charles Babbage

19

Testing, Profiling, & Instrumentation
• How do you know if your program is correct?

o Will it ever crash?
o Does it ever produce the wrong answer?
o How: testing, testing, testing, testing, …

• How do you know what your program is doing?
o How fast is your program?
o Why is it slow for one input but not for another?
o How much memory is it using?
o How: timing, profiling, and instrumentation (later in the course)

20

Program Verification
• How do you know if your program is correct?

o Can you prove that it is correct?
o Can you prove properties of the code?

– e.g., It terminates

Program
Checkersetarray.c

Right/Wrong
Specification

?

"Beware of bugs in the above code;
I have only proved it correct, not tried it." -- Donald Knuth

21

Program Testing
• Convince yourself that your program probably works

Test
Programsetarray.c

Probably
Right/Wrong

Specification

How do you write a test program?How do you write a test program?

22

Test Programs
• Properties of a good test program

o Tests boundary conditions
o Exercise as much code as possible
o Produce output that is known to be right/wrong

How do you achieve all three properties?How do you achieve all three properties?

23

Program Testing
• Testing boundary conditions

o Almost all bugs occur at boundary conditions
o If program works for boundary cases, it probably works for others

• Exercising as much code as possible
o For simple programs, can enumerate all paths through code
o Otherwise, sample paths through code with random input
o Measure test coverage

• Checking whether output is right/wrong?
o Match output expected by test programmer (for simple cases)
o Match output of another implementation
o Verify conservation properties

o Note: real programs often have fuzzy specifications

24

Test Boundary Conditions
• Code to get line from stdin and put in character array

int i;

char s[MAXLINE];

for (i=0; (s[i]=getchar()) != ‘\n’ && i < MAXLINE-1; i++)
;

s[--i] = ‘\0’;

• Boundary conditions
o Input starts with \n (empty line)
o End of file before \n
o End of file immediately (empty file)
o Line exactly MAXLINE-1 characters long
o Line exactly MAXLINE characters long
o Line more than MAXLINE characters long

what happens?

25

Test Boundary Condition
• Rewrite the code

int i;

char s[MAXLINE];
for (i=0; i<MAXLINE-1; i++)

if ((s[i] = getchar()) == ‘\n’)
break;

s[i] = ‘\0’;

• Another boundary condition: EOF
for (i=0; i<MAXLINE-1; i++)

if ((s[i] = getchar()) == ‘\n’ || s[i] == EOF)
break;

s[i] = ‘\0’;

• What are other boundary conditions?
o Nearly full
o Exactly full
o Over full

This is
wrong; why?

26

A Bit Better...
• Rewrite yet again

for (i=0; ; i++) {
int c = getchar();
if (c==EOF || c==’\n’ || i==MAXLINE-1) {
s[i]=’\0’;
break;

}
else s[i] = c;

}

Output:

o There’s still a problem...

Input:
Four
score and seven
years

FourØ
score anØ
sevenØ

yearsØ

Where’s
the ‘d’?

27

Ambiguity in Specification
• If line is too long, what should happen?

o Keep first MAXLINE characters, discard the rest?
o Keep first MAXLINE-1 characters + ‘\0’ char, discard the rest?
o Keep first MAXLINE-1 characters + ‘\0’ char, save the rest for the

next call to the input function?

• Probably, the specification didn’t even say what to do if
MAXLINE is exceeded
o Probably the person specifying it would prefer that unlimited-length

lines be handled without any special cases at all
o Moral: testing has uncovered a design problem, maybe even a

specification problem!

• Define what to do
o Truncate long lines?
o Save the rest of the text to be read as the next line?

28

Moral of This Little Story:
• Complicated, messy boundary cases are often

symptomatic of bad design or bad specification

• Clean up the specification if you can

• If you can’t fix the specification, then fix the code

29

Test As You Write Code
• Use “assert” generously (the time you save will be your own)

• Check pre- and post-conditions for each function
o Boundary conditions

• Check invariants

• Check error returns

30

Test Automation
• Automation can provide better test coverage

• Test program
o Client code to test modules
o Scripts to test inputs and compare outputs

• Testing is an iterative process
o Initial automated test program or scripts
o Test simple parts first
o Unit tests (i.e., individual modules) before system tests
o Add tests as new cases created

• Regression test
o Test all cases to compare the new version with the previous one
o A bug fix often create new bugs in a large software system

31

Stress Tests
• Motivations

o Use computer to generate inputs to test
o High-volume tests often find bugs

• What to generate
o Very long inputs
o Random inputs (binary vs. ASCII)
o Fault injection

• How much test
o Exercise all data paths
o Test all error conditions

32

Who Tests What
• Implementers

o White-box testing
o Pros: An implementer knows all data paths
o Cons: influenced by how code is designed/written

• Quality Assurance (QA) engineers
o Black-box testing
o Pros: No knowledge about the implementation
o Cons: Unlikely to test all data paths

• Customers
o Field test
o Pros: Unexpected ways of using the software, “debug” specs
o Cons: Not enough cases; customers don’t like “participating” in this

process; malicious users exploit the bugs

33

Conclusions
• Scoping

o Knowing which variables are accessible where
o C rules for determining scope vs. good programming practices

• Testing
o Identifying boundary cases
o Stress testing the code
o Debugging the code, and the specification!

