
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.cs.Princeton.EDU/IntroCS

7.8 Intractability

2

Q. Which algorithms are useful in practice?

A working definition. [von Neumann 1953, Gödel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

! Model of computation = deterministic Turing machine.

! Measure running time as a function of input size N.

! Efficient = polynomial time for all inputs.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

Properties of Algorithms

Ex 1. Sorting N elements takes N2 steps using insertion sort.

Ex 2. Finding best TSP tour on N elements takes N! steps using exhaustive search.

constants a and b tend to be small

a N
b

3

Exponential Growth

Exponential growth dwarfs technological change.

! Suppose you have a giant parallel computing device…

! With as many processors as electrons in the universe…

! And each processor has power of today's supercomputers…

! And each processor works for the life of the universe…

! Will not help solve 1,000 city TSP problem via brute force.

Quantity

electrons in universe †

supercomputer instructions per second

Value

1079

1013

age of universe in seconds † 1017 † Estimated

1000! >> 101000 >> 1079 ! 1013 ! 1017

4

Q. Which problems can we solve in practice?

A. Those with poly-time algorithms.

Q. Which problems have poly-time algorithms?

A. No easy answers. Focus of today's lecture.

Properties of Problems

5

LSOLVE. Given a system of linear equations, find a solution.

LP. Given a system of linear inequalities, find a solution.

ILP. Given a system of linear inequalities, find a binary solution.!

48x0 + 16x1 + 119x2 " 88

5x0 + 4x1 + 35x2 # 13

15x0 + 4x1 + 20x2 # 23

x0 , x1 , x2 # 0

!

x
0

= 1

x
1

= 1

x
2

= 1
5

Three Fundamental Problems

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

!

x
0

= "1

x
1

= 2

x
2

= 2

!

 x
1

+ x
2

" 1

x
0

+ x
2

" 1

x
0

+ x
1

+ x
2

2

!

x
0

= 0

x
1

= 1

x
2

= 1

6

LSOLVE. Given a system of linear equations, find a solution.

LP. Given a system of linear inequalities, find a solution.

ILP. Given a system of linear inequalities, find a binary solution.

Q. Which of these problems have poly-time solutions?

A. No easy answers.

 LSOLVE. Yes. Gaussian elimination solves N-by-N system in N3 time.

 LP. Yes. Celebrated ellipsoid algorithm is poly-time.

 ILP. No poly-time algorithm known or believed to exist!

Three Fundamental Problems

?

"

"

7

Search Problems

Search problem. Given an instance I of a problem, find a solution S.

Requirement. Must be able to efficiently check that S is a solution.

poly-time in size of instance I

or report none exists

8

Search Problems

Search problem. Given an instance I of a problem, find a solution S.

Requirement. Must be able to efficiently check that S is a solution.

LSOLVE. Given a system of linear equations, find a solution.

! To check solution S, plug in values and verify each equation.

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

poly-time in size of instance I

!

x
0

= "1

x
1

= 2

x
2

= 2

instance I solution S

or report none exists

9

!

48x0 + 16x1 + 119x2 " 88

5x0 + 4x1 + 35x2 # 13

15x0 + 4x1 + 20x2 # 23

x0 , x1 , x2 # 0

!

x
0

= 1

x
1

= 1

x
2

= 1
5

Search Problems

Search problem. Given an instance I of a problem, find a solution S.

Requirement. Must be able to efficiently check that S is a solution.

LP. Given a system of linear inequalities, find a solution.

! To check solution S, plug in values and verify each inequality.

poly-time in size of instance I

instance I solution S

or report none exists

10

Def. NP † is the class of all search problems.

Significance. What scientists and engineers aspire to compute feasibly.

8784561

Problem Description
Poly-time
algorithm

Instance Solution

ILP

 (A, b)

Find a binary vector x
that satisfies Ax # b.

???

FACTOR

 (x)

Find a nontrivial factor
of the integer x.

??? 8243

!

10657

LP

 (A, b)

Find a vector x that
satisfies Ax # b.

ellipsoid

LSOLVE

 (A, b)

Find a vector x that
satisfies Ax = b.

Gaussian
elimination

NP

can check proposed solution in poly-time

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

!

x
0

= "1

x
1

= 2

x
2

= 2

† slightly non-standard definition

!

 x
1

+ x
2

" 1

x
0

+ x
2

" 1

x
0

+ x
1

+ x
2

2

!

x
0

= 0

x
1

= 1

x
2

= 1

!

48x0 + 16x1 + 119x2 " 88

5x0 + 4x1 + 35x2 # 13

15x0 + 4x1 + 20x2 # 23

x0 , x1 , x2 # 0

!

x
0

= 1

x
1

= 1

x
2

= 1
5

11

P

Def. P † is the class of search problem solvable in poly-time.

Significance. What scientists and engineers compute feasibly.

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

Problem Description Poly-time algorithm Instance Solution

LSOLVE
(A, b)

Find a vector x that
satisfies Ax = b.

Gaussian elimination
(Edmonds, 1967)

LP
(A, b)

Find a vector x that
satisfies Ax # b.

ellipsoid
(Khachiyan, 1979)

SORT
(a)

Find permutation that
puts a in ascending order.

mergesort
(von Neumann 1945)

2.3 8.5 1.2

9.1 2.2 0.3
5 2 4 0 1 3

STCONN
(G, s, t)

Find a path from s to t
in digraph G.

depth-first search
(Theseus)

!

x
0

= "1

x
1

= 2

x
2

= 2

!

48x0 + 16x1 + 119x2 " 88

5x0 + 4x1 + 35x2 # 13

15x0 + 4x1 + 20x2 # 23

x0 , x1 , x2 # 0

!

x
0

= 1

x
1

= 1

x
2

= 1
5

† slightly non-standard definition

12

Extended Church-Turing Thesis

Extended Church-Turing thesis.

Evidence supporting thesis. True for all physical computers.

Implication. To make future computers more efficient,

suffices to focus on improving implementation of existing designs.

A new law of physics? A constraint on what is possible.

Possible counterexample? Quantum computers.

P = search problem solvable in poly-time in this universe.

13

P vs. NP

14

Automating Creativity

Q. Being creative vs. appreciating creativity?

Ex. Mozart composes a piece of music; our neurons appreciate it.

Ex. Wiles proves a deep theorem; a colleague referees it.

Ex. Boeing designs an efficient airfoil; a simulator verifies it.

Ex. Einstein proposes a theory; an experimentalist validates it.

Computational analog. Does P = NP?

creative ordinary

15

P. Class of search problem solvable in poly-time.

NP. Class of all search problems.

Does P = NP? [Is checking a solution as easy as finding one?]

Two worlds.

If yes… Poly-time algorithms for 3-SAT, ILP, TSP, FACTOR, …

If no… Would learn something fundamental about our universe.

Overwhelming consensus. P $ NP.

The Central Question

P $ NP P = NP

EXP
P = NP

NP

P

19

Classifying Problems

20

Literal. A Boolean variable or its negation.

Clause. A disjunction of 3 distinct literals.

Conjunctive normal form. A propositional

formula that is the conjunction of clauses.

3-SAT. Given a CNF formula % consisting of k clauses over n literals,

find a satisfying truth assignment (if one exists).

Key application. Electronic design automation (EDA).

A Hard Problem: 3-Satisfiability

!

Cj = x
1
" x

2
" x

3

!

x
i
 or x

i

!

" = C
1
#C

2
C

3
C

4

!

" = x
1
x

2
x

3() $ x
1
x

2
x

3() $ x
1
x

2
x

3() $ x
1
x

2
x

4()

!

x1 = true, x2 = true, x3 = false, x4 = trueSolution:

21

Q. How to solve an instance of 3-SAT with n variables?

A. Exhaustive search: try all 2n truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.

Exhaustive Search

"intractable"

22

Classifying Problems

Q. Which search problems are in P?

A. No easy answers (we don't even know whether P = NP).

Goal. Formalize notion:

Problem X is computationally not much harder than problem Y.

23

Def. Problem X reduces to problem Y if you can solve X given:

! A poly number of standard computational steps, plus

! A poly number of calls to a subroutine for solving instances of Y.

Reductions

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

24

Def. Problem X reduces to problem Y if you can solve X given:

! A poly number of standard computational steps, plus

! A poly number of calls to a subroutine for solving instances of Y.

Design algorithms. If poly-time algorithm for Y, then one for X too.

Establish intractability. If no poly-time algorithm for X, then none for Y.

Reductions: Consequences

3-SAT your research problem

previously solved problem your research problem

instance I
(of X)

Algorithm for X

solution to I
Algorithm

for Y

25

LSOLVE Reduces to LP

LSOLVE. Given a system of linear equations Ax = b, find a solution x.

LP. Given a system of linear inequalities Ax # b, find a solution x.

!

0x
0

+ 1x
1

+ 1x
2

= 4

2x
0

+ 4x
1

" 2x
2

= 2

0x
0

+ 3x
1

+ 15x
2

= 36

!

0x
0

+ 1x
1

+ 1x
2

" 4

0x
0

1x
1

1x
2

" # 4

2x
0

+ 4x
1

2x
2

" 2

#2x
0

4x
1

+ 2x
2

" #2

0x
0

+ 3x
1

+ 15x
2

" 36

0x
0

3x
1

15x
2

" # 36

!

" 0x
0

 + 1x
1
 + 1x

1
 = 4

LSOLVE instance with n variables

corresponding LP instance with n variables and 2n inequalities

26

3-SAT Reduces to ILP

3-SAT. Given a CNF formula %, find a satisfying truth assignment.

ILP. Given a system of linear inequalities, find a binary solution.

!

C1 " 1 # x1

C1 " x2

C1 " x3

C1 $ (1 # x1) + x2 + x3

!

" # C
1

" # C
2

" # C
3

" # C
4

" $ C
1

 + C
2

 + C
3

 + C
4

 % 3

& % = 1 iff C1 = C2 = C3 = C4 = 1
& C1 = 1 iff clause 1 is satisfied

corresponding ILP instance with n+k+1 variables and 4k + k + 1 inequalities

!

" = x
1
x

2
x

3() $ x
1
x

2
x

3() $ x
1
x

2
x

3() $ x
1
x

2
x

4()

3-SAT instance with n variables, k clauses

27

More Reductions From 3-SAT

Dick Karp
Turing award (1985)

Conjecture: no poly-time algorithm for 3-SAT.
(and, hence, for none of Karp problems)

3-SAT

 3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-COLOR

reduces to 3-SAT

TSP

BIN-PACKING

 ILP

28

Still More Reductions from 3-SAT

Aerospace engineering. Optimal mesh partitioning for finite elements.

Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.

Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.

Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.

Mathematics. Given integer a1, …, an, compute

Mechanical engineering. Structure of turbulence in sheared flows.

Medicine. Reconstructing 3d shape from biplane angiocardiogram.

Operations research. Traveling salesperson problem, integer programming.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Pop culture. Versions of Sudoko, Checkers, Minesweeper, Tetris.

Statistics. Optimal experimental design.

6,000+ scientific papers per year.

29

NP-Completeness

30

NP-Completeness

Q. Why do we believe 3-SAT has no poly-time algorithm?

Def. An NP problem is NP-complete if all problems in NP reduce to it.

Theorem. [Cook 1961] 3-SAT is NP-complete.

Corollary. Poly-time algorithm for 3-SAT & P = NP.

Two worlds.

every NP problem is a 3-SAT problem in disguise

P $ NP P = NP

EXP
P = NP

NP

P NPC

31

 3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

TSP

BIN-PACKING

 ILP

Cook's Theorem

3-SAT

3-COLOR

reduces to 3-SAT

All NP problems reduce to 3-SAT.

Stephen Cook
Turing award (1982)

FACTOR

32

3-SAT

 3DM VERTEX COVER

HAM-CYCLECLIQUE

INDEPENDENT SET

3-COLOR

PLANAR-3-COLOREXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

TSP

BIN-PACKING

 ILP

Cook + Karp

3-COLOR reduces to 3-SAT

3-SAT reduces to 3-COLOR

All Karp problems are different manifestations
of one "really hard" universal problem.

33

Implications of NP-Completeness

Implication. [3-SAT captures difficulty of whole class NP.]

! Poly-time algorithm for 3-SAT iff P = NP.

! If no poly-time algorithm for some NP problem, then none for 3-SAT.

Remark. Can replace 3-SAT with any of Karp's problems.

Proving a problem intractable guides scientific inquiry.

! 1926: Ising introduces simple model for phase transitions.

! 1944: Onsager finds closed form solution to 2d version in tour de force.

! 19xx: Feynman and other top minds seek 3d solution.

! 2000: 3-SAT reduces to 3D-ISING. a holy grail of statistical mechanics

search for closed formula appears doomed

34

Coping with Intractability

35

Coping With Intractability

Relax one of desired features.

! Solve the problem in poly-time.

! Solve the problem to optimality.

! Solve arbitrary instances of the problem.

Complexity theory deals with worst case behavior.

! Instance(s) you want to solve may be "easy."

! Chaff solves real-world SAT instances with ~ 10k variable.

[Matthew Moskewicz '00, Conor Madigan '00, Sharad Malik]

PU senior independent work (!)

36

Coping With Intractability

Relax one of desired features.

! Solve the problem in poly-time.

! Solve the problem to optimality.

! Solve arbitrary instances of the problem.

Develop a heuristic, and hope it produces a good solution.

! No guarantees on quality of solution.

! Ex. TSP assignment heuristics.

! Ex. Metropolis algorithm, simulating annealing, genetic algorithms.

Approximation algorithm. Find solution of provably good quality.

! Ex. MAX-3SAT: provably satisfy 87.5% as many clauses as possible.

but if you can guarantee to satisfy 87.51% as many clauses
as possible in poly-time, then P = NP !

37

Coping With Intractability

Relax one of desired features.

! Solve the problem in poly-time.

! Solve the problem to optimality.

! Solve arbitrary instances of the problem.

Special cases may be tractable.

! Ex: Linear time algorithm for 2-SAT.

! Ex: Linear time algorithm for Horn-SAT.

each clause has at most one un-negated literal

38

Exploiting Intractability: Cryptography

Modern cryptography.

! Ex. Send your credit card to Amazon.

! Ex. Digitally sign an e-document.

! Enables freedom of privacy, speech, press, political association.

RSA cryptosystem.

! To use: multiply two n-bit integers. [poly-time]

! To break: factor a 2n-bit integer. [unlikely poly-time]

23 ! 67 1,541

Multiply = EASY

Factor = HARD

39

Exploiting Intractability: Cryptography

FACTOR. Given an n-bit integer x, find a nontrivial factor.

not 1 or x

74037563479561712828046796097429573142593188889231289

08493623263897276503402826627689199641962511784399589

43305021275853701189680982867331732731089309005525051

16877063299072396380786710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)

40

Exploiting Intractability: Cryptography

FACTOR. Given an n-bit integer x, find a nontrivial factor.

Q. What is complexity of FACTOR?

A. In NP, but not known (or believed) to be in P or NP-complete.

Q. What if P = NP?

A. Poly-time algorithm for factoring; modern e-conomy collapses.

Quantum. [Shor 1994] Can factor an n-bit integer in n3 steps

on a "quantum computer."

not 1 or x

41

Summary

P. Class of search problems solvable in poly-time.

NP. Class of search problems, some of which seem wickedly hard.

NP-complete. Hardest problems in NP.

Many fundamental problems are intractable.

! TSP, 3-SAT, 3-COLOR, ILP.

! 3D-ISING.

Theory says: we probably can't design efficient algorithms for them.

! You will confront NP-complete problems in your career.

! So, identify these situations and proceed accordingly.

