
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.cs.Princeton.EDU/IntroCS

TOY II

LINC

3

What We've Learned About TOY

Data representation.

! Binary and hex.

TOY: what's in it, how to use it.

! Box with switches and lights.

! 4,328 bits = (255 ! 16) + (15 ! 16) + (8).

! von Neumann architecture.

TOY instruction set architecture.

! 16 instruction types.

Sample TOY machine language programs.

! Arithmetic.

! Loops.

541 bytes!

4

What We Do Today

Binary add, subtract.

Standard input, standard output.

Manipulate addresses.

! References (pointers).

! Arrays.

TOY simulator in Java.

5

How to add and subtract binary numbers

Binary addition facts:
! 0 + 0 = 0

! 0 + 1 = 1 + 0 = 1

! 1 + 1 = 10

! 1 + 1 + 1 = 11 (needed for carries)

Bigger numbers example:

 1 1 1

 013 0 0 0 0 1 1 0 1

 + 092 + 0 1 0 1 1 1 0 0

 105 0 1 1 0 1 0 0 1

OK, but: subtract?

! Subtract by adding a negative integer (e.g., 6 - 4 = 6 + (-4))

! OK, but: negative integers?

carries

6

How to Represent Negative Integers

TOY words are 16 bits each.

! We could use 16 bits to represent 0 to 216 - 1.

! But we want negative integers too.

! Reserving half the possible bit-patterns for negative seems fair.

Highly desirable property:

! If X is a positive integer, then the representation of -X, when

added to X, had better yield zero.

 X 0 0 1 1 0 1 0 0
+(-X) + ? ? ? ? ? ? ? ?

 0 0 0 0 0 0 0 0 0

 X 0 0 1 1 0 1 0 0

 + 1 1 0 0 1 0 1 1

+(-X) 1 1 1 1 1 1 1 1

 + 1

 0 0 0 0 0 0 0 0 0

7

“Two's Complement” Integers

Properties:

! Leading bit (bit 15) signifies sign.

! Negative integer -N represented by 216 - N.

! Trick to compute -N:

0 0 0 00 0 0 ?0 0 0 0 0 00 10+4

13 12 11 1015 14 7 69 8 6 4 1 03 25

1. Start with N.

1 1 1 11 1 1 ?1 1 1 1 1 11 01

2. Flip bits.

1 1 1 11 1 1 ?1 1 1 1 0 01 11-4

3. Add 1.

8

Two's Complement Integers

1 1 1 10 1 1 ?1 1 1 1 1 11 11

13 12 11 1015 14 7 69 8 6 4 1 03 25

0 0 0 00 0 0 ?0 0 0 0 0 00 10

0 0 0 00 0 0 ?0 0 0 0 1 10 00

0 0 0 00 0 0 ?0 0 0 0 1 00 00

0 0 0 00 0 0 ?0 0 0 0 0 10 00

0 0 0 00 0 0 ?0 0 0 0 0 00 00

1 1 1 11 1 1 ?1 1 1 1 1 11 11

1 1 1 11 1 1 ?1 1 1 1 1 01 11

1 1 1 11 1 1 ?1 1 1 1 0 11 11

1 1 1 11 1 1 ?1 1 1 1 0 01 11

0 0 0 01 0 0 ?0 0 0 0 0 00 00

7FFF

0004

0003

0002

0001

0000

FFFF

FFFE

FFFD

FFFC

8000

+32767

+4

+3
+2
+1

+0

-1

-2
-3
-4

-32768

HexDec Binary

9

Properties of Two's Complement Integers

Nice properties:

! 0000000000000000 represents 0.

! -0 and +0 are the same.

! Addition is easy (see next slide).

! Checking for arithmetic overflow is easy.

Not-so-nice properties.

! Can represent one more negative integer than positive integer.

(-32,768 = -215 but not 32,768 = 215).

- N = ~N + 1

10

Two's Complement Arithmetic

Addition is carried out as if all integers were positive.

! It usually works.

1 1 1 11 1 1 ?1 1 1 1 0 11 11-3

0 0 0 00 0 0 ?0 0 0 0 0 00 104

+

=

0 0 0 00 0 0 ?0 0 0 0 0 10 001

11

Two's Complement Arithmetic

Addition is carried out as if all integers were positive.

! It usually works.

! But overflow can occur:

– carry into sign (left most) bit with no carry out

1 1 1 10 1 1 ?1 1 1 1 1 11 11+32,767

0 0 0 00 0 0 ?0 0 0 0 1 00 002

0 0 0 01 0 0 ?0 0 0 0 0 10 00-32,767

+

=

12

Standard Output

Standard output.

! Writing to memory location FF sends one word to TOY stdout.

! 9AFF writes the integer in register A to stdout.

00: 0000 0

01: 0001 1

10: 8A00 RA <- mem[00] a = 0

11: 8B01 RB <- mem[01] b = 1

 while(a > 0) {

12: 9AFF print RA print a

13: 1AAB RA <- RA + RB a = a + b

14: 2BAB RB <- RA - RB b = a - b

15: DA12 if (RA > 0) goto 12 }

16: 0000 halt

0000

0001

0001

0002

0003

0005

0008

000D

0015

0022

0037

0059

0090

00E9

0179

0262

03DB

063D

0A18

1055

1A6D

2AC2

452F

6FF1

13

Fibonacci Numbers

Infinite series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

!
"

!
#

$

+

=

=

=

%% otherwise

1 if1

0 if0

21 nn

n

FF

n

n

F

Fibonacci Rabbits:

L. P. Fibonacci
(1170 - 1250)

14

Standard Input

Standard input.

! Loading from memory address FF loads one word from TOY stdin.

! 8AFF reads in an integer from stdin and stores it in register A.

Ex: read in a sequence of integers and print their sum.

! In Java, stop reading when EOF.

! In TOY, stop reading when user enters 0000.

while(!StdIn.isEmpty()) {

 a = StdIn.readInt();

 sum = sum + a;

}

System.out.println(sum);

00: 0000 0

10: 8C00 RC <- mem[00]

11: 8AFF read RA

12: CA15 if (RA == 0) pc " 15

13: 1CCA RC " RC + RA

14: C011 pc " 11

15: 9CFF write RC

16: 0000 halt

00AE

0046

0003

0000

00F7

15

Standard Input and Output: Implications

Standard input and output enable you to:

! Put information from real world into machine.

! Get information out of machine.

! Process more information than fits in memory.

! Interact with the computer while it is running.

Information can be instructions!

! Booting a computer.

! Sending programs over the Internet

! Sending viruses over the Internet

16

addr

Load Address (a.k.a. Load Constant)

Load address. (opcode 7)

! Loads an 8-bit integer into a register.

! 7A30 means load the value 30 into register A.

Applications.

! Load a small constant into a register.

! Load a 8-bit memory address into a register.

– register stores "pointer" to a memory cell

1

13

1

12

1

11

0

10

0

15

1

14

0

7

?

6

1

9

0

8

0

6

1

4

0

1

0

0

0

3

0

2

1

5

716 A16 316 016

opcode dest d

a = 30;

Java code

17

Arrays in TOY

TOY main memory is a giant array.

! Can access memory cell 30 using load and store.

! 8C30 means load mem[30] into register C.

! Goal: access memory cell i where i is a variable.

Load indirect. (opcode A)

! AC06 means load mem[R6] into register C.

Store indirect. (opcode B)

! BC06 means store contents of register C into mem[R6].

for (int i = 0; i < N; i++)
 a[i] = StdIn.readInt();

for (int i = 0; i < N; i++)

 System.out.println(a[N-i-1]);

Reverse.java

a variable index

a variable index

18

TOY Implementation of Reverse

TOY implementation of reverse.

! Read in a sequence of integers and store in memory 30, 31, 32, …

– stop reading if 0000

! Print sequence in reverse order.

10: 7101 R1 " 0001 constant 1

11: 7A30 RA " 0030 a[]

12: 7B00 RB " 0000 n

while(true) {

13: 8CFF read RC c = StdIn.readInt();

14: CC19 if (RC == 0) goto 19 if (c == 0) break;

15: 16AB R6 " RA + RB address of a[n]

16: BC06 mem[R6] " RC a[n] = c;

17: 1BB1 RB " RB + R1 n++;

18: C013 goto 13 }

read in the data

19

TOY Implementation of Reverse

TOY implementation of reverse.

! Read in a sequence of integers and store in memory 30, 31, 32, …

– stop reading if 0000

! Print sequence in reverse order.

19: CB20 if (RB == 0) goto 20 while (n > 0) {

1A: 16AB R6 " RA + RB address of a[n]

1B: 2661 R6 " R6 – R1 address of a[n-1]

1C: AC06 RC " mem[R6] c = a[n-1];

1D: 9CFF write RC System.out.println(c);

1E: 2BB1 RB " RB – R1 n--;

1F: C019 goto 19 }

20: 0000 halt

20

Unsafe Code at any Speed

What happens if we make array start at 00 instead of 30?

! Self modifying program.

! Exploit buffer overflow and run arbitrary code!

10: 7101 R1 " 0001 constant 1

11: 7A00 RA " 0000 a[]

12: 7B00 RB " 0000 n

while(true) {

13: 8CFF read RC c = StdIn.readInt();

14: CC19 if (RC == 0) goto 19 if (c == 0) break;

15: 16AB R6 " RA + RB address of a[n]

16: BC06 mem[R6] " RC a[n] = c;

17: 1BB1 RB " RB + R1 n++;

18: C013 goto 13 }

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

8888 8810

98FF C011

Crazy 8s Input

21

Buffer overrun.

! Array buffer[] has size 100.

! User might enter 200 characters.

! Might lose control of machine behavior.

! Majority of viruses and worms caused by

similar errors.

Robert Morris Internet Worm.

! Cornell grad student injected worm into Internet in 1988.

! Exploited buffer overrun in finger daemon fingerd.

Java enforces security.

! Type safety.

! Array bounds checking.

! Not foolproof. [Appel '03: shine 50W bulb at DRAM.]

What Can Happen When We Lose Control (in C or C++)?

#include <stdio.h>

int main(void) {

 char buffer[100];

 scanf("%s", buffer);

 printf("%s\n", buffer);

 return 0;

}

unsafe C program

22

Buffer Overrun Example: JPEG of Death

Microsoft Windows JPEG bug. [September, 2004]

! Step 1. User views malicious JPEG in Internet Explorer or Outlook.

! Step 2. Machine is 0wned.

! Data becomes code by exploiting buffer overrun in GDI+ library.

Fix.

! Update old library with patched one.

! Caveat: many applications install independent copies of GDI library.

Moral.

! Not easy to write error-free software.

! Be grateful for security features built in to Java.

! Don't try to maintain several copies of the same file.

! Keep your operating system patched.

23

Dumping.

! Work all day to develop operating system.

! How do you save it for tomorrow?

– leave computer on?

– write short program dump.toy

– run dump.toy to dump contents of memory onto tape

Dumping

00: 7001 R1 " 0001

01: 7210 R2 " 0010 i = 10

02: 73FF R3 " 00FF

 do {

03: AA02 RA " mem[R2] a = mem[i]

04: 9AFF write RA print a

05: 1221 R2 " R2 + R1 i++

06: 2432 R4 " R3 - R2

07: D403 if (R4 > 0) goto 03 } while (i < 255)

08: 0000 halt

dump.toy

24

Booting.

! How do you get it back?

– turn on computer, old memory values gone

– write short program boot.toy

– read contents of memory from tape by running boot.toy

– use original program

Booting

00: 7001 R1 " 0001

01: 7210 R2 " 0010 i = 10

02: 73FF R3 " 00FF

 do {

03: 8AFF read RA read a

04: BA02 mem[R2] " RA mem[i] = a

05: 1221 R2 " R2 + R1 i++

06: 2432 R4 " R3 - R2

07: D403 if (R4 > 0) goto 03 } while (i < 255)

08: 0000 halt

boot.toy
25

TOY Simulator

Write a program to "simulate" the behavior of the TOY machine.

! TOY simulator in Java.

! TOY simulator in TOY!

public class TOY {

 public static void main(String[] args) {

 int pc = 0x10; // program counter

 int[] R = new int[16]; // registers

 int[] mem = new int[256]; // main memory

 // READ IN .toy FILE

 while(true) {

 // FETCH INSTRUCTION and DECODE

 ...

 // EXECUTE

 ...
 }
 }
}

% java TOY add-stdin.toy

A012

002B

A03D

26

TOY Simulator: Fetch

Extract destination register of 1CAB by shifting and masking.

int inst = mem[pc++]; // fetch and increment

int op = (inst >> 12) & 15; // opcode (bits 12-15)

int d = (inst >> 8) & 15; // dest d (bits 08-11)

int s = (inst >> 4) & 15; // source s (bits 04-07)

int t = (inst >> 0) & 15; // source t (bits 00-03)

int addr = (inst >> 0) & 255; // addr (bits 00-07)

0 1 1 10 0 10 0 0 0 1 11 01

116 C16 A16 B16

0 0 0 00 0 00 0 0 1 0 01 10

016 016 1 C16

inst

inst >> 8

0 0 0 00 0 00 0 0 0 1 11 10

016 016 016 F16

0 0 0 00 0 00 0 0 0 0 01 10

016 016 0 C16

15

(inst >> 8) & 15

27

TOY Simulator: Execute

if (op == 0) break; // halt

switch (op) {

 case 1: R[d] = R[s] + R[t]; break;

 case 2: R[d] = R[s] - R[t]; break;

 case 3: R[d] = R[s] & R[t]; break;

 case 4: R[d] = R[s] ^ R[t]; break;

 case 5: R[d] = R[s] << R[t]; break;

 case 6: R[d] = R[s] >> R[t]; break;

 case 7: R[d] = addr; break;

 case 8: R[d] = mem[addr]; break;

 case 9: mem[addr] = R[d]; break;

 case 10: R[d] = mem[R[t]]; break;

 case 11: mem[R[t]] = R[d]; break;

 case 12: if (R[d] == 0) pc = addr; break;

 case 13: if (R[d] > 0) pc = addr; break;

 case 14: pc = R[d]; break;

 case 15: R[d] = pc; pc = addr; break;

}

†

†

28

TOY Simulator: Missing Details

Omitted details.

! Register 0 is always 0.

– reset to 0000 after each fetch-execute step

! Standard input and output.

– if addr is FF and opcode is load then read in data

– if addr is FF and opcode is store then write out data

– (load and store indirect have a similar problem)

! TOY registers are 16-bit integers; program counter is 8-bit.

– Java int is 32 bits

See TOY.java for full details.

29

Simulation

Consequences of simulation.

! Test out new machine or microprocessor using simulator.

– cheaper and faster than building actual machine

! Easy to add new functionality to simulator.

– trace, single-step, breakpoint debugging

– simulator more useful than TOY itself

! Reuse software from old machines.

Ancient programs still running on modern computers.

! Ticketron.

! Lode Runner on Apple IIe.

