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What We've Learned About TOY

Data representation.

! Binary and hex.

TOY:  what's in it, how to use it.

! Box with switches and lights.

! 4,328 bits  =  (255 ! 16)  +  (15 ! 16)  + (8).

! von Neumann architecture.

TOY instruction set architecture.

! 16 instruction types.

Sample TOY machine language programs.

! Arithmetic.

! Loops.

541 bytes!
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What We Do Today

Binary add, subtract.

Standard input, standard output.

Manipulate addresses.

! References (pointers).

! Arrays.

TOY simulator in Java.
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How to add and subtract binary numbers

Binary addition facts:
! 0 + 0 = 0

! 0 + 1 = 1 + 0 = 1

! 1 + 1 = 10

! 1 + 1 + 1 = 11   (needed for carries)

Bigger numbers example:

         1                    1 1

         013            0 0 0 0 1 1 0 1

       + 092          + 0 1 0 1 1 1 0 0

         105            0 1 1 0 1 0 0 1

OK, but: subtract?

! Subtract by adding a negative integer  (e.g., 6 - 4 = 6 + (-4))

! OK, but: negative integers?

carries
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How to Represent Negative Integers

TOY words are 16 bits each.

! We could use 16 bits to represent 0 to 216 - 1.

! But we want negative integers too.

! Reserving half the possible bit-patterns for negative seems fair.

Highly desirable property:

! If X is a positive integer, then the representation of -X, when

added to X, had better yield zero.

    X       0 0 1 1 0 1 0 0
+(-X)    + ? ? ? ? ? ? ? ?

   0       0 0 0 0 0 0 0 0

   X       0 0 1 1 0 1 0 0

         + 1 1 0 0 1 0 1 1

+(-X)      1 1 1 1 1 1 1 1

         +               1

   0       0 0 0 0 0 0 0 0
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“Two's Complement” Integers

Properties:

! Leading bit (bit 15) signifies sign.

! Negative integer -N represented by 216 - N.

! Trick to compute -N:

0 0 0 00 0 0 ?0 0 0 0 0 00 10+4

13 12 11 1015 14 7 69 8 6 4 1 03 25

1.  Start with N.

1 1 1 11 1 1 ?1 1 1 1 1 11 01

2.  Flip bits.

1 1 1 11 1 1 ?1 1 1 1 0 01 11-4

3.  Add 1.
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Two's Complement Integers

1 1 1 10 1 1 ?1 1 1 1 1 11 11

13 12 11 1015 14 7 69 8 6 4 1 03 25

0 0 0 00 0 0 ?0 0 0 0 0 00 10

0 0 0 00 0 0 ?0 0 0 0 1 10 00

0 0 0 00 0 0 ?0 0 0 0 1 00 00

0 0 0 00 0 0 ?0 0 0 0 0 10 00

0 0 0 00 0 0 ?0 0 0 0 0 00 00

1 1 1 11 1 1 ?1 1 1 1 1 11 11

1 1 1 11 1 1 ?1 1 1 1 1 01 11

1 1 1 11 1 1 ?1 1 1 1 0 11 11

1 1 1 11 1 1 ?1 1 1 1 0 01 11

0 0 0 01 0 0 ?0 0 0 0 0 00 00

7FFF

0004

0003

0002

0001

0000

FFFF

FFFE

FFFD

FFFC

8000

+32767

+4

+3
+2
+1

+0

-1

-2
-3
-4

-32768

HexDec Binary
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Properties of Two's Complement Integers

Nice properties:

! 0000000000000000 represents 0.

! -0 and +0 are the same.

! Addition is easy (see next slide).

! Checking for arithmetic overflow is easy.

Not-so-nice properties.

! Can represent one more negative integer than positive integer.

(-32,768 = -215  but not  32,768 = 215 ).

- N  =  ~N + 1
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Two's Complement Arithmetic

Addition is carried out as if all integers were positive.

! It usually works.

1 1 1 11 1 1 ?1 1 1 1 0 11 11-3

0 0 0 00 0 0 ?0 0 0 0 0 00 104

+

=

0 0 0 00 0 0 ?0 0 0 0 0 10 001
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Two's Complement Arithmetic

Addition is carried out as if all integers were positive.

! It usually works.

! But overflow can occur:

– carry into sign (left most) bit with no carry out

1 1 1 10 1 1 ?1 1 1 1 1 11 11+32,767

0 0 0 00 0 0 ?0 0 0 0 1 00 002

0 0 0 01 0 0 ?0 0 0 0 0 10 00-32,767

+

=
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Standard Output

Standard output.

! Writing to memory location FF sends one word to TOY stdout.

! 9AFF writes the integer in register A to stdout.

00: 0000   0

01: 0001   1

10: 8A00   RA <- mem[00]            a = 0

11: 8B01   RB <- mem[01]            b = 1

                                    while(a > 0) {

12: 9AFF   print RA                    print a

13: 1AAB   RA <- RA + RB               a = a + b

14: 2BAB   RB <- RA - RB               b = a - b

15: DA12   if (RA > 0) goto 12      }

16: 0000   halt

0000

0001

0001

0002

0003

0005

0008

000D

0015

0022

0037

0059

0090

00E9

0179

0262

03DB

063D

0A18

1055

1A6D

2AC2

452F

6FF1
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Fibonacci Numbers

Infinite series:  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

!
"

!
#

$

+

=

=

=

%% otherwise

1   if1

0  if0

21 nn

n

FF

n

n

F

Fibonacci Rabbits:

L. P. Fibonacci
(1170 - 1250)
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Standard Input

Standard input.

! Loading from memory address FF loads one word from TOY stdin.

! 8AFF reads in an integer from stdin and stores it in register A.

Ex:  read in a sequence of integers and print their sum.

! In Java, stop reading when EOF.

! In TOY, stop reading when user enters 0000.

while(!StdIn.isEmpty()) {

   a = StdIn.readInt();

   sum = sum + a;

}

System.out.println(sum);

00: 0000   0

10: 8C00   RC <- mem[00]

11: 8AFF   read RA

12: CA15   if (RA == 0) pc " 15

13: 1CCA   RC " RC + RA

14: C011   pc " 11

15: 9CFF   write RC

16: 0000   halt

00AE

0046

0003

0000

00F7
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Standard Input and Output:  Implications

Standard input and output enable you to:

! Put  information from real world into machine.

! Get information out of machine.

! Process more information than fits in memory.

! Interact with the computer while it is running.

Information can be instructions!

! Booting a computer.

! Sending programs over the Internet

! Sending viruses over the Internet
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addr

Load Address (a.k.a. Load Constant)

Load address.  (opcode  7)

! Loads an 8-bit integer into a register.

! 7A30 means load the value 30 into register A.

Applications.

! Load a small constant into a register.

! Load a 8-bit memory address into a register.

– register stores "pointer" to a memory cell

1

13

1

12

1

11

0

10

0

15

1

14

0

7

?

6

1

9

0

8

0

6

1

4

0

1

0

0

0

3

0

2

1

5

716 A16 316 016

opcode dest d

a = 30;

Java code
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Arrays in TOY

TOY main memory is a giant array.

! Can access memory cell 30 using load and store.

! 8C30 means load  mem[30] into register C.

! Goal:  access memory cell i where i is a variable.

Load indirect.  (opcode A)

! AC06 means load mem[R6] into register C.

Store indirect.  (opcode B)

! BC06 means store contents of register C into  mem[R6].

for (int i = 0; i < N; i++)
   a[i] = StdIn.readInt();

for (int i = 0; i < N; i++)

   System.out.println(a[N-i-1]);

Reverse.java

a variable index

a variable index
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TOY Implementation of Reverse

TOY implementation of reverse.

! Read in a sequence of integers and store in memory 30, 31, 32, …

– stop reading if 0000

! Print sequence in reverse order.

10: 7101  R1 " 0001    constant 1

11: 7A30  RA " 0030    a[]

12: 7B00  RB " 0000    n

while(true) {

13: 8CFF  read RC    c = StdIn.readInt();

14: CC19  if (RC == 0) goto 19    if (c == 0) break;

15: 16AB  R6 " RA + RB    address of a[n]

16: BC06  mem[R6] " RC    a[n] = c;

17: 1BB1  RB " RB + R1    n++;

18: C013  goto 13 }

read in the data
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TOY Implementation of Reverse

TOY implementation of reverse.

! Read in a sequence of integers and store in memory 30, 31, 32, …

– stop reading if 0000

! Print sequence in reverse order.

19: CB20  if (RB == 0) goto 20 while (n > 0) {

1A: 16AB  R6 " RA + RB    address of a[n]

1B: 2661  R6 " R6 – R1    address of a[n-1]

1C: AC06  RC " mem[R6]    c = a[n-1];

1D: 9CFF  write RC    System.out.println(c);

1E: 2BB1  RB " RB – R1    n--;

1F: C019  goto 19 }

20: 0000  halt
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Unsafe Code at any Speed

What happens if we make array start at 00 instead of 30?

! Self modifying program.

! Exploit buffer overflow and run arbitrary code!

10: 7101  R1 " 0001    constant 1

11: 7A00  RA " 0000    a[]

12: 7B00  RB " 0000    n

while(true) {

13: 8CFF  read RC    c = StdIn.readInt();

14: CC19  if (RC == 0) goto 19    if (c == 0) break;

15: 16AB  R6 " RA + RB    address of a[n]

16: BC06  mem[R6] " RC    a[n] = c;

17: 1BB1  RB " RB + R1    n++;

18: C013  goto 13 }

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

8888 8810

98FF C011

Crazy 8s Input
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Buffer overrun.

! Array buffer[] has size 100.

! User might enter 200 characters.

! Might lose control of machine behavior.

! Majority of viruses and worms caused by

similar errors.

Robert Morris Internet Worm.

! Cornell grad student injected worm into Internet in 1988.

! Exploited buffer overrun in finger daemon fingerd.

Java enforces security.

! Type safety.

! Array bounds checking.

! Not foolproof.   [Appel '03:  shine 50W bulb at DRAM.]

What Can Happen When We Lose Control (in C or C++)?

#include <stdio.h>

int main(void) {

   char buffer[100];

   scanf("%s", buffer);

   printf("%s\n", buffer);

   return 0;

}

unsafe C program
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Buffer Overrun Example:  JPEG of Death

Microsoft Windows JPEG bug.  [September, 2004]

! Step 1.  User views malicious JPEG in Internet Explorer or Outlook.

! Step 2.  Machine is 0wned.

! Data becomes code by exploiting buffer overrun in GDI+ library.

Fix.

! Update old library with patched one.

! Caveat:  many applications install independent copies of GDI library.

Moral.

! Not easy to write error-free software.

! Be grateful for security features built in to Java.

! Don't try to maintain several copies of the same file.

! Keep your operating system patched.
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Dumping.

! Work all day to develop operating system.

! How do you save it for tomorrow?

– leave computer on?

– write short program dump.toy

– run dump.toy to dump contents of memory onto tape

Dumping

00: 7001   R1 " 0001

01: 7210   R2 " 0010 i = 10

02: 73FF   R3 " 00FF

     do {

03: AA02   RA " mem[R2]    a = mem[i]

04: 9AFF   write RA         print a

05: 1221   R2 " R2 + R1    i++

06: 2432   R4 " R3 - R2

07: D403   if (R4 > 0) goto 03 } while (i < 255)

08: 0000   halt

dump.toy
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Booting.

! How do you get it back?

– turn on computer, old memory values gone

– write short program boot.toy

– read contents of memory from tape by running boot.toy

– use original program

Booting

00: 7001   R1 " 0001

01: 7210   R2 " 0010 i = 10

02: 73FF   R3 " 00FF

     do {

03: 8AFF   read RA     read a

04: BA02   mem[R2] " RA    mem[i] = a

05: 1221   R2 " R2 + R1    i++

06: 2432   R4 " R3 - R2

07: D403   if (R4 > 0) goto 03 } while (i < 255)

08: 0000   halt

boot.toy
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TOY Simulator

Write a program to "simulate" the behavior of the TOY machine.

! TOY simulator in Java.

! TOY simulator in TOY!

public class TOY {

   public static void main(String[] args) {

      int pc    = 0x10;          // program counter

      int[] R   = new int[16];   // registers

      int[] mem = new int[256];  // main memory

      // READ IN .toy FILE

      while(true) {

         // FETCH INSTRUCTION and DECODE

         ...

         // EXECUTE

         ...
      }
   }
}

% java TOY add-stdin.toy

A012

002B

A03D
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TOY Simulator:  Fetch

Extract destination register of 1CAB by shifting and masking.

int inst = mem[pc++];           // fetch and increment

int op   = (inst >> 12) &  15;  // opcode   (bits 12-15)

int d    = (inst >>  8) &  15;  // dest d   (bits 08-11)

int s    = (inst >>  4) &  15;  // source s (bits 04-07)

int t    = (inst >>  0) &  15;  // source t (bits 00-03)

int addr = (inst >>  0) & 255;  // addr     (bits 00-07)

0 1 1 10 0 10 0 0 0 1 11 01

116 C16 A16 B16

0 0 0 00 0 00 0 0 1 0 01 10

016 016 1 C16

inst

inst >> 8

0 0 0 00 0 00 0 0 0 1 11 10

016 016 016 F16

0 0 0 00 0 00 0 0 0 0 01 10

016 016 0 C16

15

(inst >> 8) & 15

27

TOY Simulator:  Execute

if (op == 0) break;       // halt 

switch (op) {

   case  1: R[d] = R[s] +  R[t];         break;

   case  2: R[d] = R[s] -  R[t];         break;

   case  3: R[d] = R[s] &  R[t];         break;

   case  4: R[d] = R[s] ^  R[t];         break;

   case  5: R[d] = R[s] << R[t];         break;

   case  6: R[d] = R[s] >> R[t];         break;

   case  7: R[d] = addr;                 break;

   case  8: R[d] = mem[addr];            break;

   case  9: mem[addr] = R[d];            break;

   case 10: R[d] = mem[R[t]];            break;

   case 11: mem[R[t]] = R[d];            break;

   case 12: if (R[d] == 0) pc = addr;    break;

   case 13: if (R[d] >  0) pc = addr;    break;

   case 14: pc = R[d];                   break;

   case 15: R[d] = pc; pc = addr;        break;

} 

†

†
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TOY Simulator:  Missing Details

Omitted details.

! Register 0 is always 0.

– reset to 0000 after each fetch-execute step

! Standard input and output.

– if addr is FF and opcode is load then read in data

– if addr is FF and opcode is store then write out data

– (load and store indirect have a similar problem)

! TOY registers are 16-bit integers; program counter is 8-bit.

– Java int is 32 bits

See TOY.java for full details.
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Simulation

Consequences of simulation.

! Test out new machine or microprocessor using simulator.

– cheaper and faster than building actual machine

! Easy to add new functionality to simulator.

– trace, single-step, breakpoint debugging

– simulator more useful than TOY itself

! Reuse software from old machines.

Ancient programs still running on modern computers.

! Ticketron.

! Lode Runner on Apple IIe.


