9. Scientific Computing

Introduction to Computer Science · Robert Sedgewick and Kevin Wayne · Copyright @ 2006 · http://www.cs.Princeton.EDU/IntroCS

Floating Point

IEEE 754 representation.

- Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: float = 32 bits.
- Double precision: double = 64 bits.
- Most real numbers are not representable, including π and 1/10.

Ex. Single precision representation of -0.453125.

Applications of Scientific Computing

Science and engineering challenges.

- Fluid dynamics.
- Seismic surveys.
- Plasma dynamics.
- Ocean circulation.
- Electronics design.
- Pharmaceutical design.
- Human genome project.
- Vehicle crash simulation. Global climate simulation.
- Nuclear weapons simulation.
- Molecular dynamics simulation.

Commercial applications.

- Web search.
- Financial modeling.
- Computer graphics.
- Digital audio and video.
- Natural language processing.
- Architecture walk-throughs.
- Medical diagnostics (MRI, CAT).

Common features.

- Problems tend to be continuous instead of discrete.
- Algorithms must scale to handle huge problems.

Floating Point

Roundoff error. When result of calculation is not representable. Consequence. Non-intuitive behavior for uninitiated.

```
if (0.1 + 0.2 == 0.3) \{ // NO \}
if (0.1 + 0.3 == 0.4) { // YES }
```

Financial computing. Calculate 9% sales tax on a 50¢ phone call. Banker's rounding. Round to nearest integer, to even integer if tie.

```
double a1 = 1.14 * 75;
                           // 85.4999999999999
double a2 = Math.round(a1); // 85 ← you lost 1¢
double b1 = 1.09 * 50; // 54.500000000001
double b2 = Math.round(b1); // 55 ← SEC violation(!)
```

Catastrophic Cancellation

A simple function.
$$f(x) = \frac{1 - \cos x}{x^2}$$

Goal. Plot
$$f(x)$$
 for $-4 \cdot 10^{-8} \le x \le 4 \cdot 10^{-8}$.

Catastrophic Cancellation

Ex. Evaluate fl(x) for x = 1.1e-8.

Math.cos(x) = 0.999999999999999998897769753748434595763683319091796875.

nearest floating point value agrees with exact answer to 16 decimal places.

(1.0 - Math.cos(x)) = 1.1102e-16 inaccurate estimate of exact answer (6.05
$$\cdot$$
 10⁻¹⁷)

(1.0 - Math.cos(x)) / (x*x) = 0.9175

80% larger than exact answer (about 0.5)

Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error.

Catastrophic Cancellation

A simple function.
$$f(x) = \frac{1 - \cos x}{x^2}$$

Goal. Plot f(x) for $-4 \cdot 10^{-8} \le x \le 4 \cdot 10^{-8}$.

IEEE 754 double precision answer

Numerical Catastrophes

Ariane 5 rocket. [June 4, 1996]

- 10 year, \$7 billion ESA project exploded after launch.
- 64-bit float converted to 16 bit signed int.
- Unanticipated overflow.

Vancouver stock exchange. [November, 1983]

- Index undervalued by 44%.
- Recalculated index after each trade by adding change in price.
- 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]

- Failed to track scud; hit Army barracks, killed 28.
- Inaccuracy in measuring time in 1/20 of a second since using 24 bit binary floating point.

Gaussian Flimination

Introduction to Computer Science · Robert Sedgewick and Kevin Wayne · Copyright @ 2006 · http://www.cs.Princeton.EDU/IntroCS

Chemical Equilibrium

Ex. Combustion of propane.

$$x_0C_3H_8 + x_1O_2 \Rightarrow x_2CO_2 + x_3H_2O$$

Stoichiometric constraints.

• Carbon: $3x_0 = x_2$. • Hydrogen: $8x_0 = 2x_3$. • Oxygen: $2x_1 = 2x_2 + x_3$.

Normalize: $x_0 = 1$.

$$C_3H_8 + 5O_2 \Rightarrow 3CO_2 + 4H_2O$$

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.

Linear System of Equations

Linear system of equations. N linear equations in N unknowns.

$$0 x_0 + 1 x_1 + 1 x_2 = 4$$

 $2 x_0 + 4 x_1 - 2 x_2 = 2$
 $0 x_0 + 3 x_1 + 15 x_2 = 36$

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$$

matrix notation: find x such that Ax = b

Fundamental problems in science and engineering.

- · Chemical equilibrium.
- Linear and nonlinear optimization.
- Kirchoff's current and voltage laws.
- Hooke's law for finite element methods.
- Leontief's model of economic equilibrium.
- Numerical solutions to differential equations.

· ...

Kirchoff's Current Law

Ex. Find current flowing in each branch of a circuit.

Kirchoff's current law.

•
$$10 = 1x_0 + 25(x_0 - x_1) + 50(x_0 - x_2)$$
.
• $0 = 25(x_1 - x_0) + 30x_1 + 1(x_1 - x_2)$.
• $0 = 50(x_2 - x_0) + 1(x_2 - x_1) + 55x_2$.

Solution. $x_0 = 0.2449$, $x_1 = 0.1114$, $x_2 = 0.1166$.

Upper Triangular System of Equations

Upper triangular system. $a_{ij} = 0$ for i > j.

$$2 x_0 + 4 x_1 - 2 x_2 = 2$$

 $0 x_0 + 1 x_1 + 1 x_2 = 4$
 $0 x_0 + 0 x_1 + 12 x_2 = 24$

Back substitution. Solve by examining equations in reverse order.

- Equation 2: $x_2 = 24/12 = 2$.
- Equation 1: $x_1 = 4 x_2 = 2$.
- Equation 0: $x_0 = (2 4x_1 + 2x_2) / 2 = -1$.

```
for (int i = N-1; i >= 0; i--) {
  double sum = 0.0;
  for (int j = i+1; j < N; j++)
     sum += A[i][j] * x[j];
  x[i] = (b[i] - sum) / A[i][i];
```

$$x_i = \frac{1}{a_{ii}} \left[b_i - \sum_{j=i+1}^{N-1} a_{ij} x_j \right]$$

Gaussian Elimination: Row Operations

Elementary row operations.

(interchange row 0 and 1)

$$2 x_0 + 4 x_1 - 2 x_2 = 2$$

 $0 x_0 + 1 x_1 + 1 x_2 = 4$
 $0 x_0 + 3 x_1 + 15 x_2 = 36$

(subtract 3x row 1 from row 2)

Gaussian Elimination

Gaussian elimination.

- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular.
- Solve upper triangular system by back substitution.

Elementary row operations.

- Exchange row p and row q.
- Add a multiple α of row p to row q.

Key invariant. Row operations preserve solutions.

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot app.

$$a_{ij} = a_{ij} - \frac{a_{ip}}{a_{pp}} a_{pj}$$

$$b_i = b_i - \frac{a_{ip}}{a_{pp}} b_p$$


```
for (int i = p + 1; i < N; i++) {
  double alpha = A[i][p] / A[p][p];
  b[i] -= alpha * b[p];
  for (int j = p; j < N; j++)
      A[i][j] -= alpha * A[p][j];
```

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot ann.

```
for (int p = 0; p < N; p++) {
  for (int i = p + 1; i < N; i++) {
    double alpha = A[i][p] / A[p][p];
    b[i] -= alpha * b[p];
  for (int j = p; j < N; j++)
    A[i][j] -= alpha * A[p][j];
  }
}</pre>
```

Gaussian Elimination Example

18

Gaussian Elimination Example

Gaussian Elimination Example

$$1 x_0 + 0 x_1 + 1 x_2 + 4 x_3 = 1
0 x_0 + -1 x_1 + -1 x_2 + -1 x_3 = 0
0 x_0 + 0 x_1 + 1 x_2 + 1 x_3 = 5
0 x_0 + 0 x_1 + -1 x_2 + 4 x_3 = 3$$

Gaussian Elimination Example

$$1x_{0} + 0x_{1} + 1x_{2} + 4x_{3} = 1$$

$$0x_{0} + -1x_{1} + -1x_{2} + -1x_{3} = 0$$

$$0x_{0} + 0x_{1} + 1x_{2} + 1x_{3} = 5$$

$$0x_{0} + 0x_{1} + 0x_{2} + 5x_{3} = 8$$

Gaussian Elimination: Partial Pivoting

Remark. Previous code fails spectacularly if pivot $a_{pp} = 0$.

Gaussian Elimination Example

```
1 x_0 + 0 x_1 + 1 x_2 + 4 x_3 = 1 

0 x_0 + -1 x_1 + -1 x_2 + -1 x_3 = 0 

0 x_0 + 0 x_1 + 1 x_2 + 1 x_3 = 5 

0 x_0 + 0 x_1 + 0 x_2 + 5 x_3 = 8
```

$$x_3$$
 = 8/5
 x_2 = 5 - x_3 = 17/5
 x_1 = 0 - x_2 - x_3 = -25/5
 x_0 = 1 - x_2 - 4 x_3 = -44/5

22

Gaussian Elimination: Partial Pivoting

Partial pivoting. Swap row p with the row that has largest entry in column p among rows i below the diagonal.

```
// find pivot row
int max = p;
for (int i = p + 1; i < N; i++)
if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
   max = i;

// swap rows p and max
double[] T = A[p]; A[p] = A[max]; A[max] = T;
double t = b[p]; b[p] = b[max]; b[max] = t;
```

Q. What if pivot $a_{pp} = 0$ with partial pivoting?

A. System has no solutions or infinitely many solutions.

Gaussian Elimination with Partial Pivoting

```
public static double[] lsolve(double[][] A, double[] b) {
  int N = b.length;
  for (int p = 0; p < N; p++) {</pre>
      // partial pivoting
     int max = p;
     for (int i = p+1; i < N; i++)</pre>
          if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
      double[] T = A[p]; A[p] = A[max]; A[max] = T;
      double t = b[p]; b[p] = b[max]; b[max] = t;
      // zero out entries of A and b using pivot A[p][p]
      for (int i = p+1; i < N; i++) {</pre>
         double alpha = A[i][p] / A[p][p];
         b[i] -= alpha * b[p];
         for (int j = p; j < N; j++)
A[i][j] -= alpha * A[p][j];</pre>
                                                                    N3/3 additions,
                                                                    N<sup>3</sup>/3 multiplications
  // back substitution
  double[] x = new double[N];
  for (int i = N-1; i >= 0; i--) {
      double sum = 0.0;
                                                                    N2/2 additions,
      for (int j = i+1; j < N; j++)
                                                                    N<sup>2</sup>/2 multiplications
         sum += A[i][j] * x[j];
      x[i] = (b[i] - sum) / A[i][i];
  return x:
```

26

Numerically Unstable Algorithms

Stability. Algorithm fl(x) for computing f(x) is numerically stable if $fl(x) \approx f(x+\epsilon)$ for some small perturbation ϵ .

Nearly the right answer to nearly the right problem.

Ex 1. Numerically unstable way to compute $f(x) = \frac{1 - \cos x}{x^2}$

= fl (1.1e-8) = 0.9175.
$$f(x) = \frac{2\sin^2(x/2)}{x^2}$$
 a stable formula

Stability and Conditioning

Introduction to Computer Science · Robert Sedgewick and Kevin Wayne · Copyright @ 2006 · http://www.cs.Princeton.EDU/IntroCS

Numerically Unstable Algorithms

Stability. Algorithm fl(x) for computing f(x) is numerically stable if $fl(x) \approx f(x+\epsilon)$ for some small perturbation ϵ .

Nearly the right answer to nearly the right problem.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

$$a = 10^{-17}$$
 $a \times_0 + 1 \times_1 = 1$
 $1 \times_0 + 2 \times_1 = 3$

Algorithm	× ₀	x ₁
no pivoting	0.0	1.0
partial pivoting	1.0	1.0
exact	$\frac{1}{1-2a} \approx 1$	$\frac{1-3\alpha}{1-2\alpha} \approx 1$

Theorem. Partial pivoting improves numerical stability.

Ill-Conditioned Problems

Conditioning. Problem is well-conditioned if $f(x) \approx f(x+\epsilon)$ for all small perturbation ϵ .

Solution varies gradually as problem varies.

Ex. Hilbert matrix.

- $\ \ \, \mathbf I$ Tiny perturbation to $\mathbf H_{12}$ makes it singular.
- Cannot solve $H_{12} x = b$ using floating point.

$$H_4 = \begin{bmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}$$

Hilbert matrix

Matrix condition number. [Turing, 1948] Concept useful for detecting ill-conditioned linear systems.

Euler's Method

Euler's method. [to numerically solve initial value ODE]

- Choose ∆t sufficiently small.
- Approximate function at time t by tangent line at t.
- Estimate value of function at time $t + \Delta t$ according to tangent line.
- Increment time to $t + \Delta t$.
- Repeat.

$$x_{t+\Delta t} = x_t + \Delta t \frac{dx}{dt} (x_t, y_t, z_t)$$

$$y_{t+\Delta t} = y_t + \Delta t \frac{dy}{dt} (x_t, y_t, z_t)$$

$$z_{t+\Delta t} = z_t + \Delta t \frac{dz}{dt} (x_t, y_t, z_t)$$

Advanced methods. Use less computation to achieve desired accuracy.

- 4th order Runge-Kutta: evaluate slope four times per step.
- Variable time step: automatically adjust timescale Δt .
- See COS 323.

Numerically Solving an Initial Value ODE

Lorenz attractor.

- Idealized atmospheric model to describe turbulent flow.
- Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down,

$$\frac{dx}{dt} = -10(x+y)$$

$$\frac{dy}{dt} = -xz + 28x - y$$

$$\frac{dz}{dt} = xy - \frac{8}{3}z$$

Edward Lorenz

- x = fluid flow velocity
- y = ∇ temperature between ascending and descending currents
- z = distortion of vertical temperature profile from linearity

Solution. No closed form solution for x(t), y(t), z(t). Approach. Numerically solve ODE.

Lorenz Attractor: Java Implementation

```
public class Lorenz {
  public static double dx(double x, double y, double z)
      { return -10*(x - y);
   public static double dy (double x, double y, double z)
      { return - x*z + 28*x - y; }
   public static double dz (double x, double y, double z)
      { return x*y - 8*z/3;
   public static void main(String[] args) {
      double x = 0.0, y = 20.0, z = 25.0;
      double dt = 0.001;
      StdDraw.setXscale(-25, 25);
      StdDraw.setYscale( 0, 50);
      while (true) {
         double xnew = x + dt * dx(x, y, z);
                                                   Euler's method
        double ynew = y + dt * dy(x, y, z);
        double znew = z + dt * dz(x, y, z);
         x = xnew; y = ynew; z = znew;
         StdDraw.point(x, z);
                                                   plot x vs. z
```

The Lorenz Attractor

% java Lorenz

(-25, 0)

Stability and Conditioning

Accuracy depends on both stability and conditioning.

- Danger: apply unstable algorithm to well-conditioned problem.
- Danger: apply stable algorithm to ill-conditioned problem.
- Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable algorithms for well-conditioned problems.

 ${\color{blue} \textbf{Lesson 1.}} \ \ \textbf{Some algorithms} \ \textbf{are unsuitable for floating point solutions.}$

Lesson 2. Some problems are unsuitable to floating point solutions.

Butterfly Effect

Experiment.

- Initialize y = 20.01 instead of y = 20.
- Plot original trajectory in blue, perturbed one in magenta.
- What happens?

Ill-conditioning.

- Sensitive dependence on initial conditions.
- Property of system, not of numerical solution approach.

Predictability: Does the Flap of a Butterfly's Wings in Brazil set off a Tornado in Texas? - Title of 1972 talk by Edward Lorenz