
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.cs.Princeton.EDU/IntroCS

4.1 - 4.2 Analysis of Algorithms

2

Running Time

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily

guide the future course of the science. Whenever any

result is sought by its aid, the question will arise - By what

course of calculation can these results be arrived at by the

machine in the shortest time? - Charles Babbage

Analytic Engine (schematic)

3

Overview

Analysis of algorithms. Framework for comparing algorithms and

predicting performance.

Scientific method.

! Observe some feature of the universe.

! Hypothesize a model that is consistent with observation.

! Predict events using the hypothesis.

! Verify the predictions by making further observations.

! Validate the theory by repeating the previous steps until

the hypothesis agrees with the observations.

Universe = computer itself.

4

Algorithmic Successes

N-body Simulation.

! Simulate gravitational interactions among N bodies.

! Brute force: N2 steps.

! Barnes-Hut: N log N steps, enables new research.

Discrete Fourier transform.

! Break down waveform of N samples into periodic components.

Applications: DVD, JPEG, MRI, astrophysics, ….

! Brute force: N2 steps.

! FFT algorithm: N log N steps, enables new technology.

Sorting.

! Rearrange N items in ascending order.

! Fundamental information processing abstraction.

Andrew Appel
PU '81

Freidrich Gauss
1805

Jon von Neumann
IAS 1945

5

Case Study: Sorting

Sorting problem. Rearrange N items into ascending order.

Applications. Statistics, databases, data compression, computational

biology, computer graphics, scientific computing, ...

Hanley

Haskell

Hauser

Hayes

Hong

Hornet

Hsu

Hauser

Hong

Hsu

Hayes

Haskell

Hanley

Hornet

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.cs.Princeton.EDU/IntroCS

Insertion Sort

7

Insertion sort.

! Brute-force sorting solution.

! Move left-to-right through array.

! Exchange next element with larger elements to its left, one-by-one.

Insertion Sort

8

Insertion Sort: Java Implementation

public class Insertion {

 private static boolean less(double x, double y) {

 return (x < y);

 }

 private static void exch(double[] a, int i, int j) {

 double swap = a[i];

 a[i] = a[j];

 a[j] = swap;

 }

 public static void sort(double[] a) {

 for (int i = 0; i < a.length; i++) {

 for (int j = i; j > 0; j--) {

 if (less(a[j], a[j-1]))

 exch(a, j, j-1);

 else break;

 }

 }

 }

}

sorting helper functions

sorting algorithm

9

Insertion Sort: Observation

Observe and tabulate running time for various values of N.

! Data source: N random numbers between 0 and 1.

! Machine: Apple G5 1.8GHz with 1.5GB memory running OS X.

! Timing: Skagen wristwatch.

5.6 seconds400 million40,000

1.5 seconds99 million20,000

0.43 seconds25 million10,000

0.13 seconds6.2 million5,000

23 seconds

TimeComparisonsN

1600 million80,000

10

Data analysis. Plot # comparisons vs. input size on log-log scale.

Regression. Fit line through data points ! a Nb.

Hypothesis. # comparisons grows quadratically with input size ! N2/4.

Insertion Sort: Experimental Hypothesis

slope

11

Insertion Sort: Prediction and Verification

Experimental hypothesis. # comparisons ! N2/4.

Prediction. 400 million comparisons for N = 40,000.

Observations.

Prediction. 10 billion comparisons for N = 200,000.

Observation.

145 seconds9.997 billion200,000

TimeComparisonsN

5.573 sec399.7 million40,000

5.648 sec401.6 million40,000

5.632 sec400.0 million40,000

5.595 sec

TimeComparisonsN

401.3 million40,000

Agrees.

Agrees.

12

Insertion Sort: Validation

Number of comparisons depends on input family.

! Descending: N2/2.

! Random: N2/4.

! Ascending: N.

13

Insertion Sort: Theoretical Hypothesis

Experimental hypothesis.

! Measure running times, plot, and fit curve.

! Model useful for predicting, but not for explaining.

Theoretical hypothesis.

! Analyze algorithm to estimate # comparisons as a function of:

– number of elements N to sort

– average or worst case input

! Model useful for predicting and explaining.

Critical difference. Theoretical model is independent of a particular

machine or compiler; applies to machines not yet built.

14

Insertion Sort: Analysis

Worst case. (descending)

! Iteration i requires i comparisons.

! Total = (0 + 1 + 2 + ... + N-1) ! N2 / 2 compares.

Average case. (random)

! Iteration i requires i/2 comparisons on average.

! Total = (0 + 1 + 2 + ... + N-1) / 2 ! N2 / 4 compares

E F G H I J D C B A

A C D F H J E B I G

i

i

15

Insertion Sort: Theoretical Hypothesis

Theoretical hypothesis.

Validation. Theory agrees with observations.

1/6 N3/2N2 / 4Average

N

N2 / 2

Comparisons

-

-

StddevAnalysis

Worst

Best

9.9997 billion

Actual

10.000 billion

PredictedN

200,000

16

Insertion Sort: Lesson

Lesson. Supercomputer can't rescue a bad algorithm.

1 second

1 day

Million

instant

instant

Thousand Billion
Comparisons
Per Second

Computer

3 centuries107laptop

2 weeks1012super

17

Moore's Law

Moore's law. Transistor density on a chip doubles every 2 years.

Variants. Memory, disk space, bandwidth, computing power per $.

http://en.wikipedia.org/wiki/Moore's_law

18

Moore's Law and Algorithms

Quadratic algorithms do not scale with technology.

! New computer may be 10x as fast.

! But, has 10x as much memory so problem may be 10x bigger.

! With quadratic algorithm, takes 10x as long!

Lesson. Need linear algorithm to keep pace with Moore's law.

Software inefficiency can always outpace Moore's Law.

Moore's Law isn't a match for our bad coding. - Jaron Lanier

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.cs.Princeton.EDU/IntroCS

Mergesort

20

Mergesort

Mergesort.

! Divide array into two halves.

! Recursively sort each half.

! Merge two halves to make sorted whole.

21

Mergesort: Example

22

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

A G L O R H I M S T

A G H I L M

private static void merge(double[] a, double[] aux, int l, int m, int r) {

 for (int k = l; k < r; k++) aux[k] = a[k];

 int i = l, j = m;

 for (int k = l; k < r; k++) {

 if (i >= m) a[k] = aux[j++];

 else if (j >= r) a[k] = aux[i++];

 else if (less(aux[j], aux[i])) a[k] = aux[j++];

 else if (less(aux[j], aux[i])) a[k] = aux[i++];

 }

}

i j

k

l rm

aux[]

a[]

23

Mergesort: Java Implementation

public class Merge {

 private static boolean less(double x, double y)

 // as before

 private static void merge(double[] a, double[] aux, int l, int m, int r) {

 // see previous slide

 private static void sort(double[] a, double[] aux, int l, int r) {

 if (r <= l + 1) return;

 int m = l + (r - l) / 2;

 sort(a, aux, l, m);

 sort(a, aux, m, r);

 merge(a, aux, l, m, r);

 }

 public static void sort(double[] a) {

 double[] aux = new double[a.length];

 sort(a, aux, 0, a.length);

 }

}

l m r

10 11 12 13 14 15 16 17 18 19

24

Mergesort: Preliminary Hypothesis

Experimental hypothesis. Number of comparisons ! 20N.

25

Mergesort: Prediction and Verification

Experimental hypothesis. Number of comparisons ! 20N.

Prediction. 80 million comparisons for N = 4 million.

Observations.

Prediction. 400 million comparisons for N = 20 million.

Observations.

17.5 sec460 million20 million

45.9 sec

TimeComparisonsN

1216 million50 million

3.22 sec82.7 million4 million

3.25 sec82.7 million4 million

3.13 sec

TimeComparisonsN

82.7 million4 million
Agrees.

Not quite.

26

Analysis. To mergesort array of size N , mergesort two subarrays

of size N/2, and merge them together using " N comparisons.

T(N)

T(N/2)T(N/2)

T(N/4)T(N/4)T(N/4) T(N/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

N

T(N / 2k)

2(N/2)

4(N/4)

N/2 (2)

.

.

.

log2N

N log2 N

we assume N is a power of 2

Mergesort: Analysis

27

Mergesort: Theoretical Hypothesis

Theoretical hypothesis.

Validation. Theory now agrees with observations.

N log2 NAverage

1/2 N log2 N

N log2 N

ComparisonsAnalysis

Worst

Best

1,279 million1,216 million50 million

485 million460 million20 million

133 thousand

PredictedActualN

120 thousand10,000

28

Mergesort: Lesson

Lesson. Great algorithms can be more powerful than supercomputers.

N = 1 billion

2 weeks

3 centuries

Insertion Mergesort
Comparisons
Per Second

Computer

3 hours107laptop

instant1012super

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.cs.Princeton.EDU/IntroCS

Binary Search

30

Searching a Sorted Array

Searching a sorted array. Given a sorted array, determine the index

associated with a given key.

Ex. Dictionary, phone book, book index, credit card numbers.

Binary search.

! Examine the middle key.

! If it matches, return its index.

! Otherwise, search either the left or right half.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo mid hi

31

Binary Search: Java Implementation

Invariant. Algorithm maintains a[lo] " key " a[hi].

Java library implementation. See Arrays.binarySearch().

public static int binarySearch(double[] a, double key) {

 int lo = 0;

 int hi = N-1;

 while (lo <= hi) {

 int m = lo + (hi - lo) / 2;

 if (key == a[m])) return m;

 if (key < a[m])) hi = m - 1;

 else le (ey, s) lo = m + 1;

 }

 return -1;

}

32

Binary Search: Analysis

Analysis. To binary search in an array of N elements, need to do

1 comparison and binary search in an array of N/2 elements.

N # N/2 # N/4 # N/8 # … # 1

Q. How many times can you divide a number by 2 until you reach 1?

A. log2N.

33

Scientific Method

Scientific method applies to estimate running time.

! Experimental analysis: not difficult to perform experiments.

! Theoretical analysis: may require advanced mathematics.

! Small subset of mathematical functions suffice to describe running

time of many fundamental algorithms.

for (int i = 0; i < N; i++)

 ...N

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 ...

N2

while (N > 1) {

 N = N / 2;

 ...

}

log2N

public static void f(int N) {

 if (N == 0) return;

 f(N-1);

 f(N-1);

 ...

}

2N

public static void g(int N) {

 if (N == 0) return;

 g(N/2);

 g(N/2);

 for (int i = 0; i < N; i++)

 ...

}

N log2N

34

Order of Growth Classifications

squares!Exponential algorithm is not usually practical.2N

When N doubles, running timeDescriptionFunction

quadruplesQuadratic algorithm is impractical for large N.N2

does not changeConstant algorithm is independent of input size.1

increases by a constantLogarithmic algorithm gets slightly slower as N grows.log N

doublesLinear algorithm is optimal for processing N inputs.N

slightly more than doublesLinearithmic algorithm scales to huge N.N log N

Order of growth.

! Estimate running time as a function of input size N.

! Ignore lower order terms.

– when N is large, terms are negligible

– when N is small, we don't care

! Ex: 6N3 + 17N2 + 56 ~ 6N3.

Donald Knuth
Turing award '74

35

Summary

How can I evaluate the performance of my algorithm?

! Computational experiments.

! Theoretical analysis.

What if it's not fast enough?

! Understand why.

! Buy a faster computer.

! Find a better algorithm in a textbook.

! Discover a new algorithm.

Does not apply to
some problems.

Makes "everything"
run faster.

Applicability

Dramatic qualitative
improvements possible.

$ or less.

Better AlgorithmBetter MachineAttribute

$$$ or more.Cost

Quantitative
improvements.

Improvement

