
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2006 • http://www.cs.Princeton.EDU/IntroCS

2.3 Recursion

start finish

2

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?

! New mode of thinking.

! Powerful programming tool.

! Divide-and-conquer paradigm.

Many computations are naturally self-referential.

! Quicksort, FFT, gcd.

! Linked data structures.

! A directory contains files and other directories.

Closely related to mathematical induction. Drawing Hands
M. C. Escher, 1948

3

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Ex. gcd(4032, 1272) = 24.

Applications.

! Simplify fractions: 1272/4032 = 53/168.

! RSA cryptosystem (stay tuned).

4032 = 26 ! 32 ! 71

 1272 = 23 ! 31 ! 531

 gcd = 23 ! 31 = 24

4

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Euclid's algorithm.

gcd(4032, 1272) = gcd(1272, 216)

= gcd(216, 192)

= gcd(192, 24)

= gcd(24, 0)

= 24.

!

gcd(p, q) =
p if q = 0

gcd(q, p % q) otherwise

"

$

base case

reduction step,
converges to base case

Euclid, 300 BCE

5

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

p

p % qq

x x x x x x x x

p = 8x
q = 3x
gcd(p, q) = x

q

gcd

!

gcd(p, q) =
p if q = 0

gcd(q, p % q) otherwise

"

$

base case

reduction step,
converges to base case

6

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Java implementation.

base case

reduction step

public static int gcd(int p, int q) {

 if (q == 0) return p;

 else return gcd(q, p % q);

}

!

gcd(p, q) =
p if q = 0

gcd(q, p % q) otherwise

"

$

base case

reduction step,
converges to base case

7

Htree

H-tree of order n.
! Draw an H.

! Recursively draw 4 H-trees of order n-1, one connected to each tip.

and half the size

8

9

Htree in Java

public class Htree {

 public static void draw(int n, double sz, double x, double y) {

 if (n == 0) return;

 double xl = x - sz/2, xr = x + sz/2;

 double yl = y - sz/2, yu = y + sz/2;

 StdDraw.line(xl, y, xr, y);

 StdDraw.line(xl, yl, xl, yu);

 StdDraw.line(xr, yl, xr, yu);

 draw(n-1, sz/2, xl, yl);

 draw(n-1, sz/2, xl, yu);

 draw(n-1, sz/2, xr, yl);

 draw(n-1, sz/2, xr, yu);

 }

 public static void main(String args[]) {

 int n = Integer.parseInt(args[0]);

 draw(n, .5, .5, .5);

 }

}

draw the H, centered on (x, y)

recursively draw 4 half-size Hs

(x, y)

(xl, yl)

(xr, yu)

10

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

! Only one disc may be moved at a time.

! A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

Start Finish

Edouard Lucas (1883)

12

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?

! 64 golden discs on 3 diamond pegs.

! World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?

13

Towers of Hanoi: Recursive Solution

public class TowersOfHanoi {

 public static void moves(int n, boolean left) {

 if (n == 0) return;

 moves(n-1, !left);

 if (left) System.out.println(n + " left");

 else System.out.println(n + " right");

 moves(n-1, !left);

 }

 public static void main(String[] args) {

 int N = Integer.parseInt(args[0]);

 moves(N, true);

 }

}

moves(n, true) : move discs 1 to n one pole to the left
moves(n, false): move discs 1 to n one pole to the right

14

Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 4

1 right

2 left

1 right

3 right

1 right

2 left

1 right

4 left

1 right

2 left

1 right

3 right

1 right

2 left

1 right

% java TowersOfHanoi 3

1 left

2 right

1 left

3 left

1 left

2 right

1 left

subdivisions of ruler

15

Towers of Hanoi: Recursion Tree

3, true

2, false

1, true 1, true

2, false

1, true 1, true

1 left 2 right 1 left 3 left 2 right 1 left1 left

n direction

16

Properties of Towers of Hanoi Solution

Remarkable properties of recursive solution.

! Takes 2n - 1 steps to solve n disc problem.

! Sequence of discs is same as subdivisions of ruler.

! Smallest disc always moves in same direction.

Recursive algorithm yields non-recursive solution!

! Alternate between two moves:

– move smallest disc to right if n is even

– make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

! Takes 585 billion years for n = 64 (at rate of 1 disc per second).

! Reassuring fact: any solution takes at least this long!

to left if n is odd

17

Divide-and-Conquer

Divide-and-conquer paradigm.

! Break up problem into smaller subproblems of same structure.

! Solve subproblems recursively using same method.

! Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.
! Quicksort for sorting.

! FFT for signal processing.

! Multigrid methods for solving PDEs.

! Adaptive quadrature for integration.

! Hilbert curve for domain decomposition.

! Integer arithmetic for RSA cryptography.

! Quad-tree for efficient N-body simulation.

! Midpoint displacement method for Brownian motion.

Divide et impera. Veni, vidi, vici. - Julius Caesar

18

Fractional Brownian Motion

Physical process which models many natural and artificial phenomenon.

! Dispersion of ink flowing in water.

! Price of stocks.

! Rugged shapes of mountains and clouds.

! Fractal landscapes and textures for computer graphics.

19

Simulating Brownian Motion

Midpoint displacement method.

! Maintain an interval with endpoints (x0, y0) and (x1, y1).

! Divide the interval in half.

! Choose ! at random from Gaussian distribution.

! Set xmid = (x0 + x1)/2 and ymid = (y0 + y1)/2 + !.

! Recur on the left and right intervals.

x0 x1xmid

"

20

Simulating Brownian Motion in Java

Midpoint displacement method.

! Maintain an interval with endpoints (x0, y0) and (x1, y1).

! Divide the interval in half.

! Choose ! at random from Gaussian distribution.

! Set xmid = (x0 + x1)/2 and ymid = (y0 + y1)/2 + !.

! Recur on the left and right intervals.

public static void curve(double x0, double y0,

 double x1, double y1, double var) {

 if (x1 - x0 < 0.01) {

 StdDraw.line(x0, y0, x1, y1);

 return;

 }

 double xm = (x0 + x1) / 2;

 double ym = (y0 + y1) / 2;

 ym += StdRandom.gaussian(0, Math.sqrt(var));

 curve(x0, y0, xm, ym, var/2);

 curve(xm, ym, x1, y1, var/2);

}

variance halves at each level;
change factor to get different shapes

21

Plasma Cloud

Plasma cloud centered at (x, y) of size s.

! Each corner labeled with some grayscale value.

! Divide square into four quadrants.

! The grayscale of each new corner is the average of others.

– center: average of the four corners + random displacement

– others: average of two original corners

! Recur on the four quadrants.

!

c
2
+c

4

2

!

c
1
+c

2

2

!

c
3
+c

4

2

!

c
1
+c

3

2

!

(c1+c2+c3+c4)

4
+ "

c1 c2

c3 c4

22

Plasma Cloud (Grayscale)

27

Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Fibonacci rabbits

L. P. Fibonacci
(1170 - 1250)

!

F
n

=

0 if n = 0

1 if n =1

F
n"1

+F
n"2

otherwise

$
%

&
%

29

Possible Pitfalls With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

A natural for recursion?

Observation. It takes a really long time to compute F(40).

public static int F(int n) {

 if (n == 0 || n == 1) return n;

 else return F(n-1) + F(n-2);

}

Spectacularly inefficient Fibonacci

!

F
n

=

0 if n = 0

1 if n =1

F
n"1

+F
n"2

otherwise

$
%

&
%

30

Caveat. Can easily write remarkably inefficient programs.

Binet's formula.

F(40)

F(39) F(38)

F(38)

F(37) F(36)

F(37)

F(36) F(35)

F(36)

F(35) F(34)

F(37)

F(36) F(35)

331,160,281 function calls for F(40).

F(39) is computed once.

F(38) is computed 2 times.

F(37) is computed 3 times.

F(36) is computed 5 times.

F(35) is computed 8 times.

...

F(0) is computed 165,580,141 times.

Possible Pitfalls With Recursion

recursion tree for naïve Fibonacci function

!

F(n) =
" n # (1#")n

5

= " n 5$ %

!

" = 1.61803398875

" 2 = " + 1

31

Summary

How to write simple recursive programs?

! Base case, reduction step.

! Trace the execution of a recursive program.

! Use pictures.

Why learn recursion?

! New mode of thinking.

! Powerful programming tool.

Many important problems have elegant divide-and-conquer solutions.

