
Introduction to Computer Science   •   Robert Sedgewick and Kevin Wayne   •   Copyright © 2006   •   http://www.cs.Princeton.EDU/IntroCS

1.4  Arrays

2

Arrays

This lecture.  Store and manipulate huge quantities of data.

Array.  Indexed sequence of values of the same type.

Examples.

! 52 playing cards in a deck.

! 5 thousand undergrads at Princeton.

! 1 million characters in a book.

! 10 million audio samples in an MP3 file.

! 4 billion nucleotides in a DNA strand.

! 73 billion Google queries per year.

! 50 trillion cells in the human body.

! 6.02 ! 1023 particles in a mole.

wayne0

doug1

rs2

dgabai3

mona4

cbienia5

wkj6

mkc7

index value

3

Many Variables of the Same Type

Goal.  10 variables of the same type.

// tedious and error-prone

double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

a0 = 0.0;

a1 = 0.0;

a2 = 0.0;

a3 = 0.0;

a4 = 0.0;

a5 = 0.0;

a6 = 0.0;

a7 = 0.0;

a9 = 0.0;

a9 = 0.0;

double x = a4 + a8;

4

Arrays in Java

Java has special language support for arrays.

! To make an array:  declare, create, and initialize it.

! To access element i of array named a, use a[i].

! Indices start at 0.

int N = 10;

double[] a;                  // declare the array

a = new double[N];           // create the array

for (int i = 0; i < N; i++)  // initialize the array

   a[i] = 0.0;               // all to 0.0



5

Arrays in Java

Java has special language support for arrays.

! To make an array:  declare, create, and initialize it.

! To access element i of array named a, use a[i].

! Indices start at 0.

Compact alternative.

! Combine declare, create, and initialize in one statement.

! Default initialization:  all values automatically set to 0.

int N = 10;

double[] a;                  // declare the array

a = new double[N];           // create the array

for (int i = 0; i < N; i++)  // initialize the array

   a[i] = 0.0;               // all to 0.0

int N = 10;

double[] a = new double[N];  // declare, create, init

6

Vector Dot Product

Dot product.  Given two vectors x and y of length N, their dot product

is the sum of the products of their corresponding components.

double sum = 0.0;

for (int i = 0; i < N; i++)

   sum += x[i]*y[i];

7

Compile-Time Initialize

Compile-time initialize.  Can initialize array by listing values.

Ex.  Print a random card.

String[] rank = { "2", "3", "4", "5", "6", "7", "8", "9",

                  "10", "Jack", "Queen", "King", "Ace"

                };

String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };

int i = (int) (Math.random() * 13);

int j = (int) (Math.random() * 4);

System.out.println(rank[i] + " of " + suit[j]);

between 0 and 3

between 0 and 12

8

Run-Time Initialize

Run-time initialize.  Initialize variables while program is running.

Ex.  Create a deck of playing cards and print them out.

Q.  What does it output?

String[] deck = new String[52];

   for (int i = 0; i < 13; i++)

      for (int j = 0; j < 4; j++)

         deck[4*i + j] = rank[i] + " of " + suit[j];

for (int i = 0; i < 52; i++)

   System.out.println(deck[i]);



9

Shuffling

Goal.  Given an array, rearrange its elements in random order.

Shuffling algorithm.

! In iteration i, pick card from deck[i] through deck[N-1]at random,

with each card equally likely.

! Exchange it with deck[i].

int N = 52;

for (int i = 0; i < N; i++) {

   int r = i + (int) (Math.random() * (N-i));

   String t = deck[r];

   deck[r] = deck[i];

   deck[i] = t;

}

between i and N-1swap
idiom

10

Shuffling a Deck of Cards:  Putting Everything Together

public class Deck {

   public static void main(String[] args) {

      String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };

      String[] rank = { "2", "3", "4", "5", "6", "7", "8", "9",

                        "10", "Jack", "Queen", "King", "Ace"    };

      int SUITS = suit.length;

      int RANKS = rank.length;

      int N = SUITS * RANKS;

      // create the deck

      String[] deck = new String[N];

      for (int i = 0; i < RANKS; i++)

         for (int j = 0; j < SUITS; j++)

            deck[RANKS*i + j] = rank[i] + " of " + suit[j];

      // shuffle the deck

      for (int i = 0; i < N; i++) {

         int r = i + (int) (Math.random() * (N-i));

         String t = deck[r];

         deck[r] = deck[i];

         deck[i] = t;

      }

      // print results

      for (int i = 0; i < N; i++)

         System.out.println(deck[i]);

   }

}

avoid hardwired constants

11

Shuffling a Deck of Cards

% java Deck

5 of Clubs

Jack of Hearts

9 of Spades

10 of Spades

9 of Clubs

7 of Spades

6 of Diamonds

7 of Hearts

7 of Clubs

4 of Spades

Queen of Diamonds

10 of Hearts

5 of Diamonds

Jack of Clubs

Ace of Hearts

...

5 of Spades

% java Deck

10 of Diamonds

King of Spades

2 of Spades

3 of Clubs

4 of Spades

Queen of Clubs

2 of Hearts

7 of Diamonds

6 of Spades

Queen of Spades

3 of Spades

Jack of Diamonds

6 of Diamonds

8 of Spades

9 of Diamonds

...

10 of Spades

12

Coupon Collector Problem

Coupon collector problem.  Given N different card types, how many

do you have to collect before you have (at least) one of each type?

Simulation algorithm.  Repeatedly choose an integer i between 0 and N-1.

Stop if we've already collected a card of type i.

Q.  How to check if we've seen a card of type i?

A.  Maintain a boolean array so that found[i] is true if we've

     collected a card of type i.

assuming each possibility is equally
likely for each card that you collect



13

Coupon Collector:  Java Implementation

public class CouponCollector {

   public static void main(String[] args) {

      int N = Integer.parseInt(args[0]);

      int cardcnt = 0;   // number of cards collected

      int valcnt = 0;    // number of distinct cards

      // do simulation

      boolean[] found = new boolean[N];

      while (valcnt < N) {

         int i = (int) (Math.random() * N);

         cardcnt++;

         if (!found[i]) valcnt++;

         found[i] = true;

      }

      System.out.println(cardcnt);

   }

}

type of next card
(between 0 and N-1)

14

Coupon Collector:  Debugging

Debugging.  Add code to print contents of all variables.

Challenge.  Debugging with arrays requires tracing many variables.

15

Coupon Collector:  Mathematical Context

Coupon collector problem.  Given N different possible cards, how many

do you have to collect before you have (at least) one of each type?

Fact.  About N (1 + 1/2 + 1/3 + … + 1/N).

Ex.  N = 30 baseball teams.  Expect to wait " 120 years before all

teams win a World Series.
under idealized assumptions

see ORF 245 or COS 341

16

Coupon Collector:  Scientific Context

Q.  Given a sequence from nature, does it have same characteristics as

a random sequence?

A.  No easy answer - many tests have been developed.

Coupon collector test.  Compare number of elements that need to be

examined before all values are found against the corresponding answer

for a random sequence.



Introduction to Computer Science   •   Robert Sedgewick and Kevin Wayne   •   Copyright © 2006   •   http://www.cs.Princeton.EDU/IntroCS

Multidimensional Arrays

18

Two Dimensional Arrays

Two dimensional arrays.

! Table of data for each experiment and outcome.

! Table of grades for each student and assignments.

! Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction.  Matrix.

Java abstraction.  2D array.

Reference:  Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

19

Two Dimensional Arrays in Java

Array access.  Use a[i][j] to access element in row i and column j.

Zero-based indexing.  Row and column indices start at 0.

int M = 6, N = 3;

double[][] a = new double[M][N];
for (int i = 0; i < M; i++)

   for (int j = 0; j < N; j++)

      a[i][j] = 0.0;

20

Compile-Time Initialization

Compile-time initialization.  Initialize 2D array by listing values.

 double[][] p =

 {

    { .02, .92, .02, .02, .02 },

    { .02, .02, .32, .32, .32 },

    { .02, .02, .02, .92, .02 },

    { .92, .02, .02, .02, .02 },

    { .47, .02, .47, .02, .02 },

 };



21

Matrix Multiplication

Matrix multiplication.  Given two N-by-N matrices a and b, define c

to be the N-by-N matrix where c[i][j] is the dot product of

the ith row of a and the jth row of b.

double[][] c = new double[N][N];

for (int i = 0; i < N; i++)

   for (int j = 0; j < N; j++)

      for (int k = 0; k < N; k++)

         c[i][j] += a[i][k] * b[k][j];

run-time initialize (all values set to 0)

= (.3 ! .5) + (.6 ! .1) + (.1 ! .4)2 c[1][2]

22

Hyperlink Structure of Web

Relevance.  Use web page content to determine its relevance to query.

Importance.  Use hyperlink structure of Web to determine importance

of web pages, independent of query.

23

Random Surfer Model

90-10 rule.  Web surfer chooses next page:

! 90% of the time surfer clicks random hyperlink.

! 10% of the time surfer types a random page.

Caveat.  Very crude, but useful, model of reality.

Transition matrix.  p[i][j]= prob that surfer moves from page i to j.

surfer on page 1 will go to
page 2 next 32% of the time

1-step transition matrix

24

Random Surfer and Matrix Multiplication

Q.  What is prob that surfer moves from page i to page j in two steps?

A.  P2 = P ! P.  [Matrix multiplication!]



25

Random Surfer:  Mathematical Context

Q.  What is prob that surfer moves from page i to page j in the limit?

A.           Pk  =  P ! P ! … ! P.

Mixing theorem.  Pk converges as k approaches infinity.

Moreover, all rows are equal.

fraction of time surfer spends on page j
is independent of starting point!

for our random surfer model

surfing from 1 to 2
in 8 steps

! 

k " #
lim

26

Random Surfer:  Scientific Context

Google's PageRank™ algorithm.  [Sergey Brin and Larry Page, 1998]

! Rank importance of pages based on hyperlink structure of Web,

using 90-10 rule.

! Revolutionized access to world's information.

Scientific challenges.  Cope with 4 billion-by-4 billion matrix!

! Need data structures to enable computation.

! Need linear algebra to fully understand computation.

27

Summary

Arrays.

! Organized way to store huge quantities of data.

! Almost as easy to use as primitive types.

! Can directly access an element given its index.

Caveats:

! Need to fix size of array ahead of time.

! Don't forget to allocate memory with new.

! Indices start at 0 not 1.

! Out-of-bounds to access a[-1] or a[N] of N element array.

– in Java:  ArrayIndexOutOfBoundsException

– in C:  "ghastly error"

"You’re always off by 1 in this business."   - J. Morris

Ahead.  Reading in large quantities of data from a file into an array.


