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1.4  Arrays
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Arrays

This lecture.  Store and manipulate huge quantities of data.

Array.  Indexed sequence of values of the same type.

Examples.

! 52 playing cards in a deck.

! 5 thousand undergrads at Princeton.

! 1 million characters in a book.

! 10 million audio samples in an MP3 file.

! 4 billion nucleotides in a DNA strand.

! 73 billion Google queries per year.

! 50 trillion cells in the human body.

! 6.02 ! 1023 particles in a mole.
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index value
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Many Variables of the Same Type

Goal.  10 variables of the same type.

// tedious and error-prone

double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

a0 = 0.0;

a1 = 0.0;

a2 = 0.0;

a3 = 0.0;

a4 = 0.0;

a5 = 0.0;

a6 = 0.0;

a7 = 0.0;

a9 = 0.0;

a9 = 0.0;

double x = a4 + a8;
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Arrays in Java

Java has special language support for arrays.

! To make an array:  declare, create, and initialize it.

! To access element i of array named a, use a[i].

! Indices start at 0.

int N = 10;

double[] a;                  // declare the array

a = new double[N];           // create the array

for (int i = 0; i < N; i++)  // initialize the array

   a[i] = 0.0;               // all to 0.0
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Arrays in Java

Java has special language support for arrays.

! To make an array:  declare, create, and initialize it.

! To access element i of array named a, use a[i].

! Indices start at 0.

Compact alternative.

! Combine declare, create, and initialize in one statement.

! Default initialization:  all values automatically set to 0.

int N = 10;

double[] a;                  // declare the array

a = new double[N];           // create the array

for (int i = 0; i < N; i++)  // initialize the array

   a[i] = 0.0;               // all to 0.0

int N = 10;

double[] a = new double[N];  // declare, create, init
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Vector Dot Product

Dot product.  Given two vectors x and y of length N, their dot product

is the sum of the products of their corresponding components.

double sum = 0.0;

for (int i = 0; i < N; i++)

   sum += x[i]*y[i];
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Compile-Time Initialize

Compile-time initialize.  Can initialize array by listing values.

Ex.  Print a random card.

String[] rank = { "2", "3", "4", "5", "6", "7", "8", "9",

                  "10", "Jack", "Queen", "King", "Ace"

                };

String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };

int i = (int) (Math.random() * 13);

int j = (int) (Math.random() * 4);

System.out.println(rank[i] + " of " + suit[j]);

between 0 and 3

between 0 and 12
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Run-Time Initialize

Run-time initialize.  Initialize variables while program is running.

Ex.  Create a deck of playing cards and print them out.

Q.  What does it output?

String[] deck = new String[52];

   for (int i = 0; i < 13; i++)

      for (int j = 0; j < 4; j++)

         deck[4*i + j] = rank[i] + " of " + suit[j];

for (int i = 0; i < 52; i++)

   System.out.println(deck[i]);
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Shuffling

Goal.  Given an array, rearrange its elements in random order.

Shuffling algorithm.

! In iteration i, pick card from deck[i] through deck[N-1]at random,

with each card equally likely.

! Exchange it with deck[i].

int N = 52;

for (int i = 0; i < N; i++) {

   int r = i + (int) (Math.random() * (N-i));

   String t = deck[r];

   deck[r] = deck[i];

   deck[i] = t;

}

between i and N-1swap
idiom
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Shuffling a Deck of Cards:  Putting Everything Together

public class Deck {

   public static void main(String[] args) {

      String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };

      String[] rank = { "2", "3", "4", "5", "6", "7", "8", "9",

                        "10", "Jack", "Queen", "King", "Ace"    };

      int SUITS = suit.length;

      int RANKS = rank.length;

      int N = SUITS * RANKS;

      // create the deck

      String[] deck = new String[N];

      for (int i = 0; i < RANKS; i++)

         for (int j = 0; j < SUITS; j++)

            deck[RANKS*i + j] = rank[i] + " of " + suit[j];

      // shuffle the deck

      for (int i = 0; i < N; i++) {

         int r = i + (int) (Math.random() * (N-i));

         String t = deck[r];

         deck[r] = deck[i];

         deck[i] = t;

      }

      // print results

      for (int i = 0; i < N; i++)

         System.out.println(deck[i]);

   }

}

avoid hardwired constants
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Shuffling a Deck of Cards

% java Deck

5 of Clubs

Jack of Hearts

9 of Spades

10 of Spades

9 of Clubs

7 of Spades

6 of Diamonds

7 of Hearts

7 of Clubs

4 of Spades

Queen of Diamonds

10 of Hearts

5 of Diamonds

Jack of Clubs

Ace of Hearts

...

5 of Spades

% java Deck

10 of Diamonds

King of Spades

2 of Spades

3 of Clubs

4 of Spades

Queen of Clubs

2 of Hearts

7 of Diamonds

6 of Spades

Queen of Spades

3 of Spades

Jack of Diamonds

6 of Diamonds

8 of Spades

9 of Diamonds

...

10 of Spades
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Coupon Collector Problem

Coupon collector problem.  Given N different card types, how many

do you have to collect before you have (at least) one of each type?

Simulation algorithm.  Repeatedly choose an integer i between 0 and N-1.

Stop if we've already collected a card of type i.

Q.  How to check if we've seen a card of type i?

A.  Maintain a boolean array so that found[i] is true if we've

     collected a card of type i.

assuming each possibility is equally
likely for each card that you collect
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Coupon Collector:  Java Implementation

public class CouponCollector {

   public static void main(String[] args) {

      int N = Integer.parseInt(args[0]);

      int cardcnt = 0;   // number of cards collected

      int valcnt = 0;    // number of distinct cards

      // do simulation

      boolean[] found = new boolean[N];

      while (valcnt < N) {

         int i = (int) (Math.random() * N);

         cardcnt++;

         if (!found[i]) valcnt++;

         found[i] = true;

      }

      System.out.println(cardcnt);

   }

}

type of next card
(between 0 and N-1)
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Coupon Collector:  Debugging

Debugging.  Add code to print contents of all variables.

Challenge.  Debugging with arrays requires tracing many variables.
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Coupon Collector:  Mathematical Context

Coupon collector problem.  Given N different possible cards, how many

do you have to collect before you have (at least) one of each type?

Fact.  About N (1 + 1/2 + 1/3 + … + 1/N).

Ex.  N = 30 baseball teams.  Expect to wait " 120 years before all

teams win a World Series.
under idealized assumptions

see ORF 245 or COS 341
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Coupon Collector:  Scientific Context

Q.  Given a sequence from nature, does it have same characteristics as

a random sequence?

A.  No easy answer - many tests have been developed.

Coupon collector test.  Compare number of elements that need to be

examined before all values are found against the corresponding answer

for a random sequence.
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Multidimensional Arrays
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Two Dimensional Arrays

Two dimensional arrays.

! Table of data for each experiment and outcome.

! Table of grades for each student and assignments.

! Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction.  Matrix.

Java abstraction.  2D array.

Reference:  Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed
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Two Dimensional Arrays in Java

Array access.  Use a[i][j] to access element in row i and column j.

Zero-based indexing.  Row and column indices start at 0.

int M = 6, N = 3;

double[][] a = new double[M][N];
for (int i = 0; i < M; i++)

   for (int j = 0; j < N; j++)

      a[i][j] = 0.0;
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Compile-Time Initialization

Compile-time initialization.  Initialize 2D array by listing values.

 double[][] p =

 {

    { .02, .92, .02, .02, .02 },

    { .02, .02, .32, .32, .32 },

    { .02, .02, .02, .92, .02 },

    { .92, .02, .02, .02, .02 },

    { .47, .02, .47, .02, .02 },

 };
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Matrix Multiplication

Matrix multiplication.  Given two N-by-N matrices a and b, define c

to be the N-by-N matrix where c[i][j] is the dot product of

the ith row of a and the jth row of b.

double[][] c = new double[N][N];

for (int i = 0; i < N; i++)

   for (int j = 0; j < N; j++)

      for (int k = 0; k < N; k++)

         c[i][j] += a[i][k] * b[k][j];

run-time initialize (all values set to 0)

= (.3 ! .5) + (.6 ! .1) + (.1 ! .4)2 c[1][2]
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Hyperlink Structure of Web

Relevance.  Use web page content to determine its relevance to query.

Importance.  Use hyperlink structure of Web to determine importance

of web pages, independent of query.
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Random Surfer Model

90-10 rule.  Web surfer chooses next page:

! 90% of the time surfer clicks random hyperlink.

! 10% of the time surfer types a random page.

Caveat.  Very crude, but useful, model of reality.

Transition matrix.  p[i][j]= prob that surfer moves from page i to j.

surfer on page 1 will go to
page 2 next 32% of the time

1-step transition matrix
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Random Surfer and Matrix Multiplication

Q.  What is prob that surfer moves from page i to page j in two steps?

A.  P2 = P ! P.  [Matrix multiplication!]
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Random Surfer:  Mathematical Context

Q.  What is prob that surfer moves from page i to page j in the limit?

A.           Pk  =  P ! P ! … ! P.

Mixing theorem.  Pk converges as k approaches infinity.

Moreover, all rows are equal.

fraction of time surfer spends on page j
is independent of starting point!

for our random surfer model

surfing from 1 to 2
in 8 steps

! 

k " #
lim
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Random Surfer:  Scientific Context

Google's PageRank™ algorithm.  [Sergey Brin and Larry Page, 1998]

! Rank importance of pages based on hyperlink structure of Web,

using 90-10 rule.

! Revolutionized access to world's information.

Scientific challenges.  Cope with 4 billion-by-4 billion matrix!

! Need data structures to enable computation.

! Need linear algebra to fully understand computation.
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Summary

Arrays.

! Organized way to store huge quantities of data.

! Almost as easy to use as primitive types.

! Can directly access an element given its index.

Caveats:

! Need to fix size of array ahead of time.

! Don't forget to allocate memory with new.

! Indices start at 0 not 1.

! Out-of-bounds to access a[-1] or a[N] of N element array.

– in Java:  ArrayIndexOutOfBoundsException

– in C:  "ghastly error"

"You’re always off by 1 in this business."   - J. Morris

Ahead.  Reading in large quantities of data from a file into an array.


