Lecture 3: Loops

R nCiude <sfdid.hy

i i i Y.
int main(void) NICE TRY.

int counts

for (count =13 count<=5003 counts+)

Printf ("I will not Throw paper dirplanes class,”

ceturn 05 (q
| T

Copyright 2004, FoxTrot by Bill Amend, http://www.ucomics.com/foxtrot/2003/10/03

Infroduction to Computer Science + Robert Sedgewick and Kevin Wayne - Copyright © 2005 - http://www.cs.Princeton.EDU/IntroCS

While Loops: Powers of Two

Ex. Print powers of 2.
« Increment i from1to 6 by 1.
. Double N each time.

0 1 true .
% java Powers
int 1 = 0; 1 2 true 1
e 1Y = A7 2 4 true 2
while (i <= 6) { 4
3 8 true 8

System.out.println(N) ; 16
i=i+1; 4 16 true 32

N = 2 * N; qblock statement 64
5 32 true

6 64 true

7 128 false

=

Click for demo

While Loops

The while loop. A common repetition structure.
« Check loop-continuation condition.
« Execute a sequence of statements.
= Repeat.

while (boolean expression)
statement;

boolean
expression

X statement
while loop syntax

loop-continuation body

condition

false

while loop flow chart

While Loops: Newton-Raphson Method

Q. How might we implement Math.sqrt () ?
A. To compute the square root of c:
« Initialize t = c.
« Replace t with the average of t and ¢ / t, and
repeat until + = ¢ / t, up to desired precision.

public class Sqgrt {
public static void main(String[] args) {
double EPS = 1E-15;
double c = Double.parseDouble (args[0]) ;
double t = c;
while (Math.abs(t - c/t) > t*EPS) {
t = (c/t +¢tt) / 2.0;

} error tolerance
System.out.println(t) ;

% java Sqrt 2.0
1.414213562373095
LN

15 decimal digits of accuracy in 5 iterations

While Loops: Newton-Raphson Method

Newton-Raphson method explained.

« Goal: find root of function f(x).

« Start with estimate t,. ™ g0z -c
[« Draw line tangent to curve at x= t,.

y =flx) ———

. Set t,,; to be x-coordinate where line hits x-axis.
« Repeat until desired precision. root

of one or several variables

Applications and extensions. v
« Find roots of a differentiable function.
« Optimize a twice differentiable function.

check where derivative is zero

For Loops: Subdivisions of a Ruler

Create subdivision of a ruler.
« Initialize ruler to empty string.
« For each value i=1toN.
« Sandwich two copies of the ruler on either side of i.

String ruler = " ";
for (int i = 1; i <= N; i++) {
ruler = ruler + i + ruler; 1 2
} 2 121"
System.out.println (ruler) ; 3 "1213121"

For Loops

The for loop. Another common repetition structure.
« Initialize variable.
« Check loop-continuation condition.
« Execute sequence of statements.
« Increment variable.
= Repeat.

initialization

for (init; boolean; update)
statement;

for loop syntax

b.

boolean frue
" statement
expression m
loop-continuation body
condition false

é for loop flow chart

For Loops: Subdivisions of a Ruler

Observation.
« Program produces 2N - 1 integers.
=« Loops can produce a huge amount of output!

% java Ruler 1

o

java Ruler 2
21

i

0

java Ruler 3
213121

[N

o

java Ruler 4
21312141213121

i

o

% java Ruler 100
Exception in thread "main"
java.lang.OutOfMemoryError

Nesting Conditionals and Loops

Conditionals enable you to do one of 2" Loops enable you to do an operqﬁon
sequences of operations with n lines. n times using only 2 lines of code.
if (a0 > 0) System.out.print(0) ; double sum = 0.0;
if (al > 0) System.out.print(l); for (int i = 1; i <= 1024; i++)
if (a2 > 0) System.out.print(2); sum = sum + 1.0 / i;
if (a3 > 0) System.out.print(3);
if (a4 > 0) System.out.print(4); computes 1/1+1/2 +..+1/1024
if (a5 > 0) System.out.print(5);
if (a6 > 0) System.out.print(6) ;
if (a7 > 0) System.out.print(7);
if (a8 > 0) System.out.print(8) ;
if (a9 > 0) System.out.print(9);

210 = 1024 possible results, depending on input

More sophisticated programs.
= Nest conditionals within conditionals.
« Nest loops within loops.
« Nest conditionals within loops within loops.

Gambler's Ruin

Gambler's ruin. Gambler starts with $stake and places $1 even bets
until going broke or reaching $goal.

« What are the chances of winning?

« How many bets will it take?

One approach. Numerical simulation.
= Flip digital coins and see what happens.
« Repeat and compute statistics.

win
goal goal

e e —I_I_l_'_l_,_LI_I_I_I_I_I_I_I_H_l_LI_L‘
0 0

loss

Nested If-Else

Ex. Pay a certain tax rate depending on income level.

0 - 47,450 22%
47,450 - 114,650 25%
114,650 - 174,700 28%
174,700 - 311,950 33%

311,950 - 35%

double rate;

if (income < 47450) rate = 0.22;
else if (income < 114650) rate = 0.25;
else if (income < 174700) rate = 0.28;
else if (income < 311950) rate = 0.33;
else rate = 0.35;

graduated income tax calculation

Library Functions: Math.random

Math.random() returns numbers between O and 1.

Q. How is Math.random() implemented?
« Linear feedback shift register? Cosmic rays?
. User doesn't need to know details.
. User doesn't want to know details.

Caveats.
« "Random" numbers are not really random.
« Don't use for crypto or Internet gambling!
« Check assumptions about library function before using.

Gambler's Ruin

public class Gambler {
public static void main(String[] args) {
int stake Integer.parselnt (args[0]) ;

int goal = Integer.parselnt(args[l]);
int N = Integer.parselnt(args[2]) ;
int wins = 0;

System.out.println(wins + " wins of " + N);

Debugging a Program: Syntax Errors

Factor. Given an integer N, compute its prime factorization.
Application. Break RSA cryptosystem.
PP FYplosy 168=23x3x7
Syntax error. Illegal Java program.

= Compiler error messages help locate problem.

. Eventually, a file named Factors.class.

public class Factorsl {
public static void main(String[] args) {
long N = Long.parseLong (args[0])

Check if i is a factor.

As long as i is a factor,
divide it out.

} Does not compile

Simulation and Analysis

stake goal N

e

% java Gambler 10 20 1000
513 wins of 1000

% java Gambler 10 20 1000
492 wins of 1000

% java Gambler 500 2500 100 after a few minutes of
24 wins of 100 computing....

Fact. Probability of winning = stake + goal.

Fact. Expected number of bets = stake x desired gain.
Ex. 20% chance of turning $500 into $2500, but expect
to make one million $1 bets.

Remark. Both facts can be proved mathematically; for more complex
scenarios, computer simulation is often the best plan of attack.

Debugging a Program: Semantic Errors

Semantic error. Legal but wrong Java program.
« Use "system.out.println" method to identify problem.

public class Factors2 {
public static void main(String[] args) {
long N = Long.parselong(args[0]) ;

Check if i is a factor.

As long as i is a factor,
divide it out.

} No output (17) or infinite loop (49)

Debugging a Program: Performance Errors

Performance bug. Correct program but too slow.
« Use profiling to discover bottleneck.

. Devise better algorithm.

Check if i is a factor.

As long as i is a factor,

divide it out.
"
Debugging a Program: Trace

i N output i N output i N output
2 3757208 222 9 67093 16 397
3 469651 10 67093 17 397
4 469651 11 67093 18 397
5 469651 12 67093 19 397
6 469651 13 67093 13 13 20 397
7 469651 7 14 397 397
8 67093 15 397

20

Fact. If

Debugging a Program: Success

N has a factor, it has one less than or equal to its square root.

Impact. Many fewer iterations of for loop.

Check if i
is a factor.

Q. How

largest factor

N

As long as i is a factor,
divide it out.

Corner case: biggest
factor occurs once.

Debugging a Program: Analysis

big an integer can I factor?

after a few minutes of
computing....

-___ t estimated

21

Programming in Java

Programming in Java. [a slightly more realistic view]
1. Write the program.
2. Compile the program.
Compiler says: That's not a legal program.
Back to step 1 to fix your errors of syntax.
3. Execute the program.
Result is bizarrely (or subtly) wrong.

Back to step 1 to fix your errors of semantics.

4. Enjoy the satisfaction of a working program!

22

Flow Of Control Summary

Flow of control.
« Sequence of statements that are actually executed in a program.

Straight-line All statements are
programs executed in the order given.

Certain statements are

- . if
Conditionals executed depending on the)
. . if-else
values of certain variables.
Certain statements are while
Loops executed repeatedly until for
certain conditions are met. do-while

Conditionals and loops.
. Simple, but powerful tools.
=« Enables us to harness power of the computer.

