
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.cs.Princeton.EDU/IntroCS

Lecture 3: Loops

Copyright 2004, FoxTrot by Bill Amend, http://www.ucomics.com/foxtrot/2003/10/03

2

While Loops

The while loop. A common repetition structure.

! Check loop-continuation condition.

! Execute a sequence of statements.

! Repeat.

while (boolean expression)

 statement;

boolean
expression

statement
true

false

while loop syntax

bodyloop-continuation
condition

while loop flow chart

3

While Loops: Powers of Two

Ex. Print powers of 2.

! Increment i from 1 to 6 by 1.

! Double N each time.

int i = 0;

int N = 1;

while (i <= 6) {

 System.out.println(N);

 i = i + 1;

 N = 2 * N;

}

Click for demo

% java Powers

1

2

4

8

16

32

64a block statement

0 1

i N

1 2

2 4

3 8

true

i <= 6

true

true

true

4 16

5 32

6 64

7 128

true

true

true

false

4

sqrt(2)

 t0 = 2.0

 t1 = avg(t0, 2/t0) = 1.5

 t2 = avg(t1, 2/t1) = 1.4166666666666665

 t3 = avg(t2, 2/t2) = 1.4142156862745097

 t4 = avg(t3, 2/t3) = 1.4142135623746899

 t5 = avg(t4, 2/t4) = 1.414213562373095

While Loops: Newton-Raphson Method

Q. How might we implement Math.sqrt() ?

A. To compute the square root of c:

! Initialize t = c.

! Replace t with the average of t and c / t, and

repeat until t = c / t, up to desired precision.

public class Sqrt {

 public static void main(String[] args) {

 double EPS = 1E-15;

 double c = Double.parseDouble(args[0]);

 double t = c;

 while (Math.abs(t - c/t) > t*EPS) {

 t = (c/t + t) / 2.0;

 }

 System.out.println(t);

 }

}
% java Sqrt 2.0

1.414213562373095

error tolerance

15 decimal digits of accuracy in 5 iterations

5

While Loops: Newton-Raphson Method

Newton-Raphson method explained.

! Goal: find root of function f(x).

! Start with estimate t0.

! Draw line tangent to curve at x= ti.

! Set ti+1 to be x-coordinate where line hits x-axis.

! Repeat until desired precision.

Applications and extensions.

! Find roots of a differentiable function.

! Optimize a twice differentiable function.

f(x) = x2 - c

of one or several variables

check where derivative is zero

7

For Loops

The for loop. Another common repetition structure.

! Initialize variable.

! Check loop-continuation condition.

! Execute sequence of statements.

! Increment variable.

! Repeat.

initialization

update

statement
boolean

expression

true

false
bodyloop-continuation

condition

for (init; boolean; update)

 statement;

for loop syntax

for loop flow chart

8

int N = 3;

String ruler = " ";

for (int i = 1; i <= N; i++) {

 ruler = ruler + i + ruler;

}

System.out.println(ruler);

For Loops: Subdivisions of a Ruler

Create subdivision of a ruler.

! Initialize ruler to empty string.

! For each value i = 1 to N.

! Sandwich two copies of the ruler on either side of i.

1 " 1 "

i ruler

2 " 1 2 1 "

3 " 1 2 1 3 1 2 1 "

" "

9

% java Ruler 1

1

% java Ruler 2

1 2 1

% java Ruler 3

1 2 1 3 1 2 1

% java Ruler 4

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

% java Ruler 100

Exception in thread "main"

java.lang.OutOfMemoryError

For Loops: Subdivisions of a Ruler

Observation.

! Program produces 2N – 1 integers.

! Loops can produce a huge amount of output!

10

Nesting Conditionals and Loops

Conditionals enable you to do one of 2n

sequences of operations with n lines.

More sophisticated programs.

! Nest conditionals within conditionals.

! Nest loops within loops.

! Nest conditionals within loops within loops.

if (a0 > 0) System.out.print(0);

if (a1 > 0) System.out.print(1);

if (a2 > 0) System.out.print(2);

if (a3 > 0) System.out.print(3);

if (a4 > 0) System.out.print(4);

if (a5 > 0) System.out.print(5);

if (a6 > 0) System.out.print(6);

if (a7 > 0) System.out.print(7);

if (a8 > 0) System.out.print(8);

if (a9 > 0) System.out.print(9);

Loops enable you to do an operation

n times using only 2 lines of code.

double sum = 0.0;

for (int i = 1; i <= 1024; i++)

 sum = sum + 1.0 / i;

210 = 1024 possible results, depending on input

computes 1/1 + 1/2 + ... + 1/1024

11

Nested If-Else

Ex. Pay a certain tax rate depending on income level.

double rate;

if (income < 47450) rate = 0.22;

else if (income < 114650) rate = 0.25;

else if (income < 174700) rate = 0.28;

else if (income < 311950) rate = 0.33;

else if (income < 311950) rate = 0.35;

graduated income tax calculation

0 - 47,450 22%

Income Rate

47,450 – 114,650 25%

114,650 – 174,700 28%

174,700 – 311,950 33%

311,950 - 35%

12

Gambler's Ruin

Gambler's ruin. Gambler starts with $stake and places $1 even bets

until going broke or reaching $goal.

! What are the chances of winning?

! How many bets will it take?

One approach. Numerical simulation.

! Flip digital coins and see what happens.

! Repeat and compute statistics.

13

Library Functions: Math.random

Math.random() returns numbers between 0 and 1.

Q. How is Math.random() implemented?

! Linear feedback shift register? Cosmic rays?

! User doesn't need to know details.

! User doesn't want to know details.

Caveats.

! "Random" numbers are not really random.

! Don't use for crypto or Internet gambling!

! Check assumptions about library function before using.

14

public class Gambler {

 public static void main(String[] args) {

 int stake = Integer.parseInt(args[0]);

 int goal = Integer.parseInt(args[1]);

 int N = Integer.parseInt(args[2]);

 int wins = 0;

 System.out.println(wins + " wins of " + N);

 }

}

// repeat simulation N times

for (int i = 0; i < N; i++) {

}

// do gambler's ruin simulation

int t = stake;

while (t > 0 && t < goal) {

}

if (t == goal) wins++;

// flip coin and update

if (Math.random() < 0.5) t++;

else t--;

Gambler's Ruin

15

Simulation and Analysis

Fact. Probability of winning = stake ÷ goal.

Fact. Expected number of bets = stake ! desired gain.

Ex. 20% chance of turning $500 into $2500, but expect

to make one million $1 bets.

Remark. Both facts can be proved mathematically; for more complex

scenarios, computer simulation is often the best plan of attack.

% java Gambler 10 20 1000

513 wins of 1000

% java Gambler 10 20 1000

492 wins of 1000

% java Gambler 500 2500 100

24 wins of 100

stake goal N

after a few minutes of
computing….

16

Debugging a Program: Syntax Errors

Factor. Given an integer N, compute its prime factorization.

Application. Break RSA cryptosystem.

Syntax error. Illegal Java program.

! Compiler error messages help locate problem.

! Eventually, a file named Factors.class.

public class Factors1 {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0])

 for (i = 0; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ")

 N = N / i

 }

 }

}

168 = 23 ! 3 ! 7

Does not compile

As long as i is a factor,
divide it out.

Check if i is a factor.

17

Debugging a Program: Semantic Errors

Semantic error. Legal but wrong Java program.

! Use "System.out.println" method to identify problem.

public class Factors2 {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (long i = 2; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ");

 N = N / i;

 }

 }

} No output (17) or infinite loop (49)

Check if i is a factor.

As long as i is a factor,
divide it out.

18

Debugging a Program: Performance Errors

Performance bug. Correct program but too slow.

! Use profiling to discover bottleneck.

! Devise better algorithm.

public class Factors3 {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (long i = 2; i <= N; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 }
}

Too slow for large N (999,999,937)

Check if i is a factor.

As long as i is a factor,
divide it out.

19

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (long i = 2; i <= N/i; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 if (N > 1) System.out.println(N);

 else System.out.println();

 }

}

Debugging a Program: Success

Fact. If N has a factor, it has one less than or equal to its square root.

Impact. Many fewer iterations of for loop.

Check if i
is a factor.

Corner case: biggest
factor occurs once.

As long as i is a factor,
divide it out.

20

Debugging a Program: Trace

% java Factors 3757208

2 2 2 7 13 13 397

21

Q. How big an integer can I factor?

% java Factors 168

2 2 2 3 7

% java Factors 3757208

2 2 2 7 13 13 397

% java Factors 9201111169755555703

9201111169755555703

Debugging a Program: Analysis

† estimated

 largest factor

3 instant

Digits i <= N

6 0.15 seconds

9 77 seconds

12 21 hours †

instant

i <= N / i

instant

instant

0.21 seconds

instant

i * i <= N

instant

instant

0.16 seconds

15 2.4 years †

18 2.4 millennia †

4.5 seconds

157 seconds

2.7 seconds

92 seconds

after a few minutes of
computing….

22

Programming in Java

Programming in Java. [a slightly more realistic view]

1. Write the program.

2. Compile the program.

Compiler says: That’s not a legal program.

Back to step 1 to fix your errors of syntax.

3. Execute the program.

Result is bizarrely (or subtly) wrong.

Back to step 1 to fix your errors of semantics.

4. Enjoy the satisfaction of a working program!

25

Flow Of Control Summary

Flow of control.

! Sequence of statements that are actually executed in a program.

Conditionals and loops.

! Simple, but powerful tools.

! Enables us to harness power of the computer.

Straight-line
programs

All statements are
executed in the order given.

Conditionals
Certain statements are
executed depending on the
values of certain variables.

if

if-else

Loops
Certain statements are
executed repeatedly until
certain conditions are met.

while

for

do-while

Flow-Of-Control Description Examples

