

Outline

Introduction Binding analysis Docking methods

Evaluation

Discussion

Som	e resi	due	s ha	ve hiç	gher	prop	pens	ity to	be in	site
	TABLE II. Amino Acid Composition of Protein-Protein Interfaces									
	N	umber (a)			Area (b)		Propen	sities (c)	Lo Conte	Jones and
Residue	Interface	Core	Rim	Interface	Core	Rim	Core	Rim	et al. (d)	Thornton (
All	100.0	100.0	99.9	99.9	100.0	100.0				
Ala	3.9	4.0	3.8	2.8	2.7	3.1	-0.40	-0.26	-0.43	-0.17
Arg	6.4	5.9	7.0	10.1	10.1	9.9	0.13	0.11	0.13	0.27
Asn	5.9	5.4	6.4	5.7	5.4	6.4	-0.14	0.03	-0.12	0.12
Asp	6.6	5.4	8.0	5.1	4.5	6.6	-0.46	-0.07	-0.31	-0.38
Cys	3.5	4.7	2.1	1.7	1.9	1.3	1.00	0.62	0.76	0.43
Gln	3.7	3.7	3.8	4.3	4.3	4.2	-0.34	-0.36	-0.36	-0.11
Glu	6.5	4.6	8.6	6.0	4.4	10.0	-0.80	0.02	-0.47	-0.13
Gly	8.1	7.5	8.7	4.8	4.2	6.4	-0.08	0.35	0.02	-0.07
His	3.4	4.4	2.3	3.8	4.4	2.4	0.84	0.23	0.64	0.41
Ile	3.6	4.1	3.1	4.6	4.9	3.5	0.71	0.38	0.56	0.44
Leu	5.0	5.5	4.5	5.7	5.8	5.3	0.34	0.25	0.29	0.40
Lys	5.7	3.7	8.0	6.5	5.2	9.7	-0.82	-0.20	-0.57	-0.36
Met	2.0	2.6	1.4	3.2	3.7	2.0	1.13	0.51	0.98	0.66
Phe	3.5	5.1	1.7	4.1	5.5	1.1	1.01	-0.60	0.79	0.82
Pro	3.8	3.4	4.2	3.6	3.5	4.1	-0.38	-0.22	-0.25	-0.25
Ser	7.9	7.8	8.1	5.4	4.8	7.3	-0.56	-0.14	-0.42	-0.33
Thr	6.2	5.7	6.8	5.0	4.7	5.9	-0.44	-0.21	-0.35	-0.18
Trp	2.8	4.1	1.3	4.2	5.3	1.6	1.41	0.21	1.25	0.83
Tyr	6.8	8.1	5.4	9.4	10.9	5.3	1.22	0.50	1.04	0.66
1.11	4.5	43	47	38	3.8	2.0	0.08	0.11	0.09	0.27

	CAPRI				
Tarret		Befirence	Submitting program	Model q High/good	uskty ^a Accentable
101	ILL'I KIEMPOLIET	Pressure et al 2010	16	0	
102*	Notifierus virturius	Theorem et al. 2001	13	1	
103	Pro netraggourne Pab	Damoty-marine et al. 2002	13	2	
194	Conference on the All	Distance in all conce	13	0	
100	Anytane/carnel V _{HH}	Demoyter et al. 2002	13	0	
T05	Anglase/canel V _{HH}	Deanyter et al. 2002	13	8	
$T07^{\circ}$	Superantigen/TCB/B	Sundverg et al. 2002	14	12	
T08	Nidogentaminin	Takagi et al. 2003	18	11	2
T09	LicT danner	H. van Tilbeurgh and M. Graile, in prep-	17	0	
T10	TBE virus E trimer	Bressanelli et al. 2004	20	1	
T11	Cohenin/dockerin (anboavat)	Carvalho et al. 2004	19	0	1
T12	Cohesin/dockerin (Journa)	Carvalho et al. 2004	22	20	1
T13	SAG1/Fab	M. Graile and F. Ducancel, in prep-	21	5	
	Phosphatase 14/MYPT1	Terrali, et al. 2004	25	38	3
T14					
T14 T15 ⁴	Colicin D/Imm D	Gradie et al. 2004	10	9	

References						
[Bogan98]	A.A. Bogan, K.S. Thorn, "Anatomy of hot spots in protein interfaces," J. Mol. Biol., 280, 1998, pp. 1-9.					
[Chakrabarti	[2] P. Chakrabarti, J. Janin, "Dissecting protein-protein recognition sites," Proteins: Structure, Function, and Genetics, 47, 3, 2002, pp. 334-343.					
[Gidalevitz]	Gidalevitz T, Biswas C, Ding H, Schneidman D, Wolfson HJ, Stevens F. Radford S, Argon Y. "Guiding "in vitro" experiments with "in silico" predictions", http://bioinfo3d.ex.tau.ac.il/Education/BioInfo04/LastLect/Docking- grp94.ppt.					
[Janin05]	J. Janin, "Assessing predictions of protein-protein interaction: The CAPRI experiment," Protein Science, 14, 2005, pp. 278-283.					
[Jones00]	S. Jones, A. Marin, J.M. Thornton, "Protein domain interfaces: characterization and comparison with oligomeric protein interfaces," Protein Engineering, 13, 2, 2000, pp. 77-82.					
[Smith02]	G.R. Smith, M.J.E. Sternberg, "Prediction of protein-protein interactions by docking methods," Current Opinion in Structural Biology, 12, 2002, pp. 28-35.					
[Szilagyi05]	A. Szilagyi, V. Grimm, A.K. Arakaki, J. Skolnick, "Prediction of physical protein-protein interactions," Phys. Biol., 2, 2005, pp. S1-S16.					
[Wang05]	C. Wang, O. Schueler-Furman, and D. Baker, "Improved side-chain modeling for protein-protein docking", Protein Science, 14, 2005, pp. 1328-1339.					
[Wodak04]	S.J. Wodak, R. Mendez, "Prediction of protein-protein interactions: the CAPRI experiment, its evaluation and implications," Current Opinion in Structural Biology, 14, 2004, pp. 242-249.					