

Course Schedule

Next few lectures
－10／10：Binding site point sets
－10／12：Discussion with Helen Berman
－10／17：Binding site templates
－10／19：Project proposals
－10／24：Binding site surfaces
－10／26：Binding site volumes
After fall break
－Protein－ligand docking
－Protein－protein docking
－Drug screening and design
－Structure determination

Course Schedule

Next few lectures
－10／10：Binding site point sets
10／12：Discussion with Helen Berman
－10／17：Binding site templates
－10／19：Project proposals
－10／24：Binding site surfaces
－10／26：Binding site volumes
After fall break
－Protein－ligand docking
－Protein－protein docking
－Drug screening and design
－Structure determination

Course Schedule

Next few lectures
－10／10：Binding site point sets
－10／12：Discussion with Helen Berman
－10／17：Binding site templates
10／19：Project proposals
－10／24：Binding site surfaces
－10／26：Binding site volumes
After fall break
－Protein－ligand docking
－Protein－protein docking
－Drug screening and design
－Structure determination

Course Schedule

気

Next few lectures
10／10：Binding site point sets
－10／12：Discussion with Helen Berman
－10／17：Binding site templates
－10／19：Project proposals
－10／24：Binding site surfaces
－10／26：Binding site volumes
After fall break
－Protein－ligand docking
－Protein－protein docking
－Drug screening and design
－Structure determination

Outline

Introduction

Point set representations \longleftarrow
Point set matching
－Association graphs
－Geometric hashing
－Iterative closest point
Evaluation
Discussion

Point Set Representation

Set of attributed points
Atoms

- Residues
- Pseudo-centers
- Surface critical points - etc.

Key Atoms Surrounding Binding Site
1hld

Point Set Representation

Set of attributed points

- Atoms
- Residues
- Pseudo-centers
- Surface critical points
- etc.

Point Set Representation

品

Set of attributed points

- Atoms
- Residues

Pseudo-centers

- Surface critical points
- etc.

[^0][Shulman-Peleg04]

Outline

Introduction
Point set representations
Point set matching \longleftarrow

- Association graphs
- Geometric hashing
- Iterative closest point

Evaluation
Discussion

Goal is to compute a distance measure for a pair of attributed point sets

Point Set Matching

Calculating a superposition and distance measure is easy if correspondences are known (proposed)

Point Set Matching

Calculating a superposition and distance measure is easy if correspondences are known (proposed)

Least-squares optimal superposition of corresponding points

Point Set Matching

Calculating a superposition and distance measure is easy if correspondences are known (proposed)

$$
\operatorname{RMSD}(A, B)=\sqrt{\sum_{i=1}^{N}\left(A_{i}-B_{i}\right)^{2}}
$$

Distance $(A, B)=\operatorname{RMSD}(A, B)+$ OtherTerms.

Point Set Match Scoring

Outline

穻Introduction
Point set representations
Point set matching
Association graphs

- Geometric hashing
- Iterative closest point

Evaluation
Discussion

Association Graph

Geometric Hashing

Preprocessing
For each triple of points
Compute reference frame For each point

Transform point into reference frame Hash (molecule, ref. frame, properties, point)
Query processing
Choose any triple of points
Compute reference frame
For each point
Transform point into reference frame
For each entry in hash bin for transformed point
Check point properties
Vote for (molecule, ref. frame)

Geometric Hashing

Preprocessing complexity

- $\mathrm{O}\left(\mathrm{n}^{4}\right)$ for n points per binding site
$\$ \mathrm{O}\left(\mathrm{n}^{3}\right)$ possible triples * $\mathrm{O}(\mathrm{n})$ transformations per triple
Query complexity
- $\mathrm{O}(\mathrm{m})^{*}$ binsize for m points in query binding site
$\$ 1$ triple * $O(\mathrm{~m})$ transformations per triple *
binsize hash processing per transformation
Shulman-Peleg et al. 2004

Assume closest points correspond: $A \rightarrow B$

Summary

Association graphs

- Expensive for large point sets
- Distance threshold for "associations"

Geometric hashing

- Fast query, after slow preprocessing
- Distance threshold implicit in hash bucket sizes

Iterative closest points

- Fast, in practice
- Allows soft scoring functions
- Requires good initial guess

Outline
Introduction
Point set representations
Point set matching
- Association graphs
• Geometric hashing
• Iterative closest point
Evaluation ఒ
Discussion

Aligned Points

Equivalent phosphate binding areas in the binding pockets of uridylate kinase (1ukz) and the structure of a kinesine-type domain (3kar)
Sequence identity is very low $(\mathrm{SW}=41)$
Different functions
Binding sites match

Ranked Matches

Results of query with binding site of trypsin structure (1tpo)

Superposition of the binding pockets from the chorismate mutases lecm and 4 csm [Weskamp04]

Generally Speaking ...
Small sets of proteins

- Serine proteases (catalytic triad)
- Adenine-binding proteins (largest source of data)

Focus on true positives

- False positives, false negatives?
- Aggregate statistics for large set of queries?
- Statistical significance? [Stark03]

Rarely provide comparison to related approaches

- Comparison to sequence-based matching methods?
- Comparison to other local structure matching methods?

Discussion	成
$?$	

[^1]
[^0]: Represent Chemical and Geometric Properties of Surface

[^1]: References
 里
 [Besl92] P.J. Besl and N.D. McKay, "A method for registration of 3d shapes", IEEE Transactions on PAMI, 14,
 1992. 1992, pp. 239-256
 [Brakoulias04] A. Brakoulias,, R.M. Jackson, "Towards a structural classification of phosphate binding sites in proteinnucleotide complexes: an automated all-against-all structural comparison using geometric matching,"
 Proteins-Structure Function and Genetics, 56,2004 , p. $250-260$.
 [Lin94] S.L. Lin, R. Nussinov, D. Fischer, H.J. Wolfson, "Molecular-Surface Representations By Sparse CriticalPoints," Proteins-Structure Function and Genetics, 18, 1994, pp. 94-101.
 [Pennec98]] X. Pennec., N. Ayache, "A geometric algorithm to find small but highly similar 3D substructures in proteins," Bioin iformatics, 14,1998 , pp. 516-522
 [Schmitt02] S. Schmitt, D. Kuhn, G. Klebe, "A new method to detect related function among proteins
 independent of sequence and fold homology," J Mol Biol, 323, 2002, pp. 387-406.
 [Shul man-Peleg04] A. Shul man-Peleg, R. Nussinov, H.J. Wolfson, "Recognition of functional sites in protein structures," J Mol Biol, 339, 2004, pp. 607-633.
 [Wolfson97] H.J. Wolfson and I. Rigoutsos, "Geometric hashing: an overview," IEEE Computational Science \&
 Engineering, 4(4), 1997, pp. 10-21
 [Weskamp04] N. Weskamp, D. Kuhn, E. Hullermeier, G. Klebe, "Efficient similarity search in protein structure databases by k-clique hashing," Bioinformatics, 20, 2004, pp. 1522-1526.

