

.

Outline

- Notable Methods
- ASTRO-FOLD Framework
 - $n\alpha$ -helix Prediction
 - nβ-sheet Prediction
 - n Interhelical contact prediction
 - n Derivation of Restraints
 - n Generation of additional distance bounds
 - n Tertiary Structure Prediction
- o Results
- o Discussion

.

Protein Structure Prediction

Notable Methods - PSI-PRED

- Prediction of Secondary Structure
 3 stages:

 Generation of a sequence profile
 PSI-BLAST on non-redundant database
 Creates PSSM for later input
 Prediction of initial secondary structure
 Neural network (Feed forward, back
 - propagation) n Filtering of the predicted structure
 - Web server:

http://bioinf.cs.ucl.ac.uk/psipred

Jones, DT. J. Mol. Biol. (1999)

2

-

Notable Methods - RAPTOR

Xu, J and M. Li. J. Bioinf Comput Biol. (2003)

Notable Methods - Robetta

Combines
template-based and
ab initio approach

 Uses template if
 available, otherwise
 starts with ab initio
 Also includes
methods to detect
domains and model
loops

D. Chivian et al. Proteins. (2003)

Notable Methods - Skolnick

Zhang, Y. and J. Skolnick. PNAS. (2004)

Notable Methods – Available Servers
 3D Jury (consensus)
n <u>http://bioinfo.pl</u>
o 3D-pssm/phyre
n <u>http://www.sbg.bio.ic.ac.uk/~3dpssm/</u>
o 123D+
<u>n http://123d.ncfcrf.gov/run123D+.html</u>
o FFAS03

- nhttp://ffas.ljcrf.edu/ffas-cgi/cgi/ffas.pl
- o FORESST

. .

n http://abs.cit.nih.gov/foresst2/

Notable Methods – Available Servers

- 3GenesilicoD Jury (consensus)
 - n <u>http://genesilico.pl/meta/</u>
- PredictProtein <u>http://cubic.bioc.columbia.edu/predictprotein</u>
- o mGenTHREADER/PSIPRED
- n http://bioinf.cs.ucl.ac.uk/psipred/psiform.html
- o Robetta
 - n http://robetta.bakerlab.org

🧒

💏

ASTRO-FOLD

ASTRO-FOLD

👼

♥.

Helix Formation

- Physical characteristics
 n Well-defined backbone and hydrogen bonding patterns
- Physical understanding
 n Local forces: Hierarchical folding
 n Non-local forces: Hydrophobic collapse
- Experimental Evidence
 n Helix formation occurs rapidly
 n Sequence is sufficient to identify initiation/termination

Klepeis, JL and Floudas, CA. J. Comput. Chem. (2002)

• Create low energy states and the global minimum state • Formulated as a nonconvex

optimization problem n requires global optimization techniques

Klepeis, JL and Floudas, CA. J. Comput. Chem. (2002)

-

-

,

β-sheet Objective Function

• Maximizing hydrophobic potential

Klepeis, JL and Floudas, CA. J. Comput. Chem. (2003)

Dataset Selection	ו
 Protein Sources n 229 PDBSelect25¹ 	database
n 62 CATH ² databas n 20 Zhang et al. ³	e
n7 Huang et al. ⁴	
• Restrictions nNo β-sheets, at lea	ast 2 α-helices
n No highly similar s	sequences
n 318 proteins in the	e database set
	 ¹Hobohm, U. and C. Sander. Prot Sci 3 (1994) 522 ²Orengo, C.A. et al. Structure 5 (1997) 1093. ³Zhang, C. et al. PNAS 99 (2002) 3581. ⁴Huang, E.S. et al. J Mol Biol 290 (1999) 267.

Probability Development

McAllister, SR, et al. (submitted 2005)

🧒

Model Overview

- o Formulation: Maximize interhelical residue-residue contact probabilities n Binary variable $yh_{m,i}^{A}$ indicates antiparallel helical contact n Binary variable $w_{i,j}^{m,n}$ indicates residue contact
- Goal: Produce a rank-ordered list of the most likely helical contacts

 n Contacts used to restrict conformational space explored during protein tertiary structure prediction

McAllister, SR, et al. (submitted 2005)

Pairwise Model Objective

 Level 1 Objective
 n Maximize probability of pairwise residueresidue contacts

$$\begin{array}{ll} \max & & \sum_{m} \sum_{n} y_{mn}^{a} \cdot \sum_{i} \sum_{j} w_{ij}^{mn} \cdot p_{ij;mn}^{a} \\ & + & \sum_{m} \sum_{n} y_{mn}^{p} \cdot \sum_{i} \sum_{j} w_{ij}^{mn} \cdot p_{ij;mn}^{p} \\ & & y_{mn}^{a}, y_{mn}^{p}, w_{ij}^{mn} = \{0, 1\} \end{array}$$

McAllister, SR, et al. (submitted 2005)

2

Loop Prediction – Clustering Algorithm

- 1. Choose threshold *t*, choose critical cluster size *N*_{crit}
- 2. Calculate cluster sizes N_i for all conformers in ensemble
- 3. If $N_i > N_{crit}$ for all i, stop
- Discard conformers that generate clusters of size N_I<N_{crit}
- 5. Go back to step 2

Mönnigmann, M. and Floudas, CA. Proteins. (2005)

2

Derivation of Restraints

ASTRO-FOLD

Tertiary Structure Prediction Formulation

Torsion Angle Dynamics

Conformational Space Annealing

Klepeis, JL, et al. Biophys J. (2003)

Hybrid Algorithm Motivation

o αBB Features
n Global
minimum
guarantee
n Rigorous
upper and lower
bounds
n Rigorous
termination
n Slow
performance

 CSA Features n Stochastic global minimum search n Provides upper bound on solution n Heuristic termination n Faster performance

,

Klepeis, JL, et al. Biophys J. (2003)

enkephalin

Hybrid Performance o Runs on metaBB Only (iii) 350 400 Hybrid C1 n Hybrids identified Hybrid C2 Time (Hybrid C3 global minimum 300 structure (rigorous) Best Alternating Hybri Average Computational 250 n Best alternating 200 hybrid faster than 150 100 50

Klepeis, JL, et al. Biophys J. (2003)

CSA only!

ASTRO-FOLD Helix Prediction -Detailed atomistic -Simulations of loc iergy Ca ÷ Loop Structure Prediction -Dihedral angle sampling -Discard conformers by clusters vel Clu Ŧ Overall 3D Structure Prediction Klepeis, JL and Floudas, CA. Biophys J. (2003)

Alternating Hybrids

Parallelization

Protein runs scale as (N_{res})²⁻⁴

- Implement as distributed method
- n Two "master" nodes: αBB and CSA

Secondary Structure Prediction Results Applied to a number of CASP5 targets T13 T132 TIS 130 135 T18 🕘 Helix 115 Strand , Klepeis, JL and Floudas, CA. Biophys J. (2003)

Tertiary Structure Prediction Results

o Successful on a number of small protein systems • Able to address difficult structures from CASP5 targets

Protein	# of AA	RMSD
1gb1	56	4.2
bpti	58	4.1
3ci2	63	5.4
r69	68	6.2
t59	75	5.4
t114	87	4.5
t105	95	5.8
t52	101	6.9

Klepeis, JL and Floudas, CA. Biophys J. (2003)

Results – Blind Structure Prediction • PDB:1p68 (Prof. M. Hecht, Princeton Univ.) No information about secondary/tertiary structure

- o α-helix: 5-21, 30-49, 56-75, 80-100
- o Distance restraints: 63 intrahelical
- Best energy: -846 kcal/mol RMSD: 5.1Å

ASTRO-FOLD for α -helical Bundles

McAllister et al. (submitted 2005)

Discussion

?

