Representing and Matching Binding Sites with Grids

Thomas Funkhouser Princeton University CS597A, Fall 2005

Binding Site Representations

Possible binding site descriptions

- Points (atoms, residues, pseudo-centers, critical points, ...)
- Surfaces (spheres/tori, meshes, radial extent, ...)
- Volumes (alpha shapes, grids, ...)

Binding Site Representations

Possible binding site descriptions

- Points (atoms, residues, pseudo-centers, critical points, ...)
- Surfaces (spheres/tori, meshes, radial extent, ...)
- Volumes (alpha shapes, grids, ...)

Dutline	
 buttime <	
esults	
iscussion	

Outline

Introduction

Binding site modeling with grids Ø Simulation-based • Knowledge-based

Binding site matching with grid correlation

- Fast rotational matching
- Searching a database with grid signatures
- Power spectrum signature

Results

Discussion

Simulation-Based Modeling

Grids of this type are sometimes used to accelerate computation of scoring functions in docking programs

Outline

Introduction

- Binding site modeling with grids
- Simulation-based
- Ø Knowledge-based 🔶
- Binding site matching with grid correlation
- Fast rotational matching
- Searching a database with grid signatures
- Power spectrum signature
- Results
- Discussion

Knowledge-Based Modeling									
Class	Н	С	N	0	Р	s	Avg		
HEM	-0.745799	1.97266	-0.0882554	0.905717	0	0	1.61848		
ATP	0	1.85844	-0.0841064	1.12217	-0.517955	0	1.0064		
ADP	0	1.85449	-0.109433	1.07771	-0.497058	0	1.02891		
AMP	0	1.90591	-0.0765689	0.888299	-0.600485	0	1.07227		
MES	0	1.80551	-0.179099	0.908781	0	-0.888176	1.11674		
EPE	0	1.81995	-0.267681	0.888044	0	-0.865757	1.11404		
TRS	0	1.7987	-0.228735	0.887196	0	0	1.20346		
MPD	0	1.91391	0	0.673981	0	0	1.60392		
Avg	-0.745799	1.8662	-0.147697	0.918988	-0.535804	-0.876966	1.22053		
Average #stddevs above/below mean of predicted binding site									

Outline
Introduction
Binding site modeling with grids
Simulation-based
 Knowledge-based
Binding site matching with grid correlation
 Fast rotational matching
Searching a database with grid signatures
 Power spectrum signature
Results
Discussion

Fast Rotational Matching (3D)

Theoretical complexity:

- Complexity is O(N⁴) for NxNxN grid, rather than O(N⁶)
- Complexity of Wigner-D⁻¹ independent of #fields/molecule
- Complexity independent of #atoms

Practical complexity (times in seconds):

Grid	Max		Per Field			Per Pair	
Resolution (voxels)	Error (degrees)	Spherical Grid	Spherical Harmonics	Per Field Total	Cross- Multiply	Wigner-D ⁻¹ Transform	Per Pair Total
32x32x32	5.5	0.02	0.01	0.03	0.01	0.02	0.03
64x64x64	2.8	0.18	0.10	0.28	0.19	0.28	0.47
128x128x128	1.4	2.47	1.17	3.64	5.55	4.45	10.00

Fast Rotational Matching (3D)

Theoretical complexity:

- Complexity is $O(N^4)$ for NxNxN grid, rather than $O(N^6)$
- Complexity of Wigner-D⁻¹ independent of #fields/molecule
- Complexity independent of #atoms

Practical complexity (times in seconds):

Grid	Max	Per Field			Per Pair		
Resolution (voxels)	Error (degrees)	Spherical Grid	Spherical Harmonics	Per Field Total	Cross- Multiply	Wigner-D ⁻¹ Transform	Per Pair Total
32x32x32	5.5	0.02	0.01	0.03	0.01	0.02	0.03
64x64x64	2.8	0.18	0.10	0.28	0.19	0.28	0.47
128x128x128	1.4	2.47	1.17	3.64	5.55	4.45	10.00

Fast Rotational Matching (3D)

Theoretical complexity:

- Complexity is $O(N^4)$ for NxNxN grid, rather than $O(N^6)$
- Complexity of Wigner-D⁻¹ independent of #fields/molecule
- Complexity independent of #atoms

Practical complexity (times in seconds):

Grid	Max		Per Field			Per Pair		
(voxels)	(degrees)	Spherical Grid	Spherical Harmonics	Per Field Total	Cross- Multiply	Wigner-D ⁻¹ Transform	Per Pair Total	
32x32x32	5.5	0.02	0.01	0.03	0.01	0.02	0.03	
64x64x64	2.8	0.18	0.10	0.28	0.19	0.28	0.47	
128x128x128	1.4	2.47	1.17	3.64	5.55	4.45	10.00	

Outline

Introduction

- Binding site modeling with grids
- Simulation-based
- Knowledge-based
- Binding site matching with grid correlation
 - Fast rotational matching
- Searching a database with grid signatures

• Power spectrum signature

- Results
- Discussion

Power Spectrum Signature	
 Build spherical functions for concentric shells at different radii 	
Protein Model of Spherical Binding Site Functions	

Outline

Introduction

Binding site modeling with grids

- Simulation-based
- Knowledge-based
- Binding site matching with grid correlation
 - Fast rotational matching
- Searching a database with grid signatures

Power spectrum signature

Results 🔶 Discussion

11

Test Data Set										
176 binding sites / 14 ligand types (classes)										
ATP (11)	ADP (15)	AMP (10)	GTP (5)	FMN (6)						
	X	*	.	** *						
HEM (24)	MES (17)	EPE (12)	FAD (7)	NAG (17)						
CIT (18)	TAR (5)	LDA (6)	GLC (23)							

Conclusion

Grid-based representations of binding sites is interesting, but needs work ...

- Grid matching algorithms work pretty well when given a good model and the right center
- Bottlenecks right now are mainly segmentation and modeling

