

Outline

Introduction

Tertiary structure prediction ØAb initio methods

- Homology modeling
- Fold recognition

Results

Discussion

Ab Initio Methods

Goal:

· Predict tertiary structure from first principles

Motivation:

 Thermodynamic hypothesis predicts that the native conformation of a protein corresponds to a global free energy minimum of the protein/solvent system [Afinsen73]

rs.cmu.edu/~cil/t

Approach:

Find protein conformations minimizing global free energy

Challenges:

- Must search large space of possible conformations
 [§] Backbone
 [§] Side-chains
- Must be able (at least) to recognize conformations with lowest global free energy
 - § Solvation effects

Ab Initio Methods

General strategies

- Predict secondary structures first
- Predict coarse representation first (coarse-to-fine)
- Assemble structural fragments extracted from other proteins with similar local sequences

Issues

- Large search space
- Insufficient scoring functions

Outline

Introduction

- Tertiary structure prediction • Ab initio methods
- ØHomology modeling
- Fold recognition

Results

Discussion

http://www.cs.cmu.edu/~cjl/teaching/15872AS0

Homology Modeling

Sequence-sequence alignment

- Pairwise or multiple alignment
- Similar to alignment methods we've discussed § Dynamic programming, branch and bound § Amino acid substitution matrices § etc.

Homology Modeling

Optimize structure

- Determine positions of residues without alignments
- Adjust side-chain positions

CASP

Goal:

• Assess methods for prediction of protein structure from sequence

Methodology:

- Ask experimentalists to delay publication of structure
- · Build suite of sequences with unpublished structures
- Allow groups to submit predicted structures
- Evaluate/compare results

CASP

CASP6 targets:

Homology

- Templates can be found with BLAST (CM/easy) = 25
- Templates can be found with PSI-BLAST (CM/hard) = 18
- Templates can be found with profile-profile searchers, significant structural similarity, but not likely convergent evolution (FR/H) = 19

Non-homology

- Template can be found by structure alignment to PDB, but no clear evidence for homology (FR/A) = 15
- No similar structures in PDB (NF) = 10

Results

CASP questions:

- Are the models produced similar to the corresponding experimental structure?
- Is the mapping of the target sequence onto the proposed structure (i.e. the alignment) correct?
- Have similar structures that a model can be based on been identified?
- Are the details of the models correct?
- Has there been progress from the earlier CASPs?
- What methods are most effective?
- Where can future effort be most productively focused?

CASPS CASPS exactly a first of the second s

ccuracy	compari	son:		
Approach		req. seq. identity	accuracy	1
NMR, X-ray		-	1.0 Å	1
	sequence	> 50%	1.5 Å	1
Comparative	threading	> 30%	3.5 Å	
	threading	< 30%	high error	
De novo		insignificant	4-8 Å	1

R	esults				
ŀ	Accuracy	compari	son:		
	Approach		req. seq. identity	accuracy	
	NMR, X-ray		-	1.0 Å	34
		sequence	> 50%	1.5 Å	
	Comparative	threading	> 30%	3.5 Å	
		threading	< 30%	high error	
	De novo		insignificant	4-8 Å	
					12Å
				1	http://ruppweb.dyndns.org

