

	Catalytic Residues	All Residues
Alpha helix	28%	47%
Beta sheet	22%	23%
Coil	50%	30%
% Ca	in data set with 178 enz	ymes

Residu	e Con	servati	on		
٩	*			Ċ,	()
*	X	۲	de la		\$
<i></i>	۲			×	10
	ess Conserve	d	N	lore Conserve	d

Machine Learning

2

Build classifier to recognize functional residues

- Depth
- Solvent accessibility
- Propensity
- Conservation
- Hydrophobicity
- Secondary structure type
- Pocket size
- Amino acid

References						
	[An04]	J. An, M. Totrov, R. Abagyan, "Comprehensive Identification of ``Druggable" Protein Ligand Binding Sites," Genome Informatics, 15, 2, 2004, pp. 31-41.				
	[Bartlett02]	G.J. Bartlett, C.T. Porter, N.Borkakoti, J.M. Thornton, "Analysis of catalytic residues in enzyme active sites," J. Mol. Biol, 324, 1, 2002, pp. 105-121.				
	[Bate04]	P. Bate, J. Warwicker, "Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods," J Mol Biol, 340, 2, 2004, pp. 263-276.				
	[Campbel103]	S.J. Campbell, N.D. Gold, R.M. Jackson, D.R. Westhead, "Ligand binding functional site location, similarity and docking," Curr Opin Struct Biol, 13, 2003, pp. 389-395.				
	[Elcock01]	A.H. Elcock, "Prediction of functionally important residues based solely on the computed energetics of protein structure," J. Mol. Biol., 312, 4, 2001, pp. 885-896.				
	[Gutteridge03]	A. Gutteridge, G.J. Bartlett, J.M. Thornton, "Using a neural network and spatial clustering to predict the location of active sites in enzymes," J Mol Biol, 330, 2003, pp. 719-734.				
	[Laurie05]	A.T.R. Laurie, R.M. Jackson, "Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites," Bioinformatics, 2005.				
	[Nimrod05]	G. Nimrod, F. Glaser, D. Steinberg, N. Ben-Tal, T. Pupko, "In silico identification of functional regions in proteins," Bioinformatics, 21 Suppl., 2005, pp. i328-i337.				
	[Silberstein03]	Michael Silberstein, Sheldon Dennis, Lawrence Brown III, Tamas Kortvelyesi, Karl Clodfelter, Sandor Vajda, "Identification of Substrate Binding Sites in Enzymes by Computational Solvent Mapping." J. Mol. Biol., 332, 2003, pp. 1095-1113.				
	[Young94]	L. Young, R.L. Jernigan, D.G. Covell, "A role for surface hydrophobicity in protein-protein				