

Outline

Introduction
Binding site representations
Binding site localization methods

- Geometric
- Evolutionary
- Chemical

Evaluation methods
Discussion

\qquad

Outline

Introduction
Binding site representations
Binding site localization methods

- Geometric
- Evolutionary
- Evolutiona

Evaluation methods
Discussion

Outline
Introduction
Binding site representations
Binding site localization methods
•Geometric \longleftarrow This Lecture
• Evolutionary
Evaluation methods
Discussion

Binding Site Analysis

Analyze bound ligands to guide predictions

Distance from ligand atom to closest protein atom

Outline

Introduction
Binding site representations
Volumetric binding site localization methods

- Surfnet
- LIGSITE
- PASS
- CASTp/APROPOS
- PocketFinder

Evaluation methods
Discussion

Outline
Introduction
Binding site representations
Volumetric binding site localization methods
Surfnet
• LIGSITE
• PASS
• CASTp/APROPOS
Evaluation methods
Discussion

Surfnet

Outline
Introduction
Binding site representations
Volumetric binding site localization methods
• Surfnet
LIGSITE
• PASS
• CASTp/APROPOS
• PocketFinder
Evaluation methods
Discussion

LIGSITE

Traverse $\mathrm{X}, \mathrm{Y}, \mathrm{Z}+4$ cubic diagonal vectors over grid, adding 1 to each grid point lying in region between protein atoms. Scores range from 0 (completely open) to 7 (tightly buried or cavity)

LIGSITE害

Outline

Introduction
Binding site representations
Volumetric binding site localization methods

- Surfnet
- LIGSITE PASS
- CASTp/APROPOS
- PocketFinder

Evaluation methods
Discussion
PASS

[Brady00]

PASS

PASS

Pockets and Voids

A void is a "missing" part of the molecule.
A pocket is a void that is connected to the outside through a bottleneck.
If there is no bottleneck, there is no pocket.

- Surfnet
- LIGSITE
- PASS

CASTp/APROPOS

- PocketFinder

Evaluation methods
Discussion

Revised Problem Description

Given a list of positions and radii of balls in 2D/3D return a list of voids, with volume, position, surface information, etc.
Issues:

- How do we find voids?
- How do we determine voids from pockets?
- How to find the properties of the voids/pockets found?

Voronoi, Delaunay

From MathWorld:
The partitioning of a plane with \boldsymbol{n} points into convex polygons such that each polygon contains exactly one generating point and every point in a given polygon is closer to its generating point than to any other.

Triangle covering.

The last point in a triangle to be filled is the center of the circumscribing circle.

The last point to get filled in an obtuse triangle is along the edge.

Invariance to size of balls

To test if a ball B of radius R can be placed at position P, one only needs to check that the distance to every ball B_{i} is greater than $R+R_{i}$.

As a result, we can increase the size of B_{i} by a constant amount and reduce the size of B by the same amount without changing the solution.

Edge covering.

3

The last point on an edge to be covered is right in the middle.

Overview of algorithm

8

For each edge, triangle, tetrahedron (in 3D):

- Calculate the minimum radius needed to cover.
- Insert into ordered list.

For a given radius (alpha), the triangles that can't be covered are each a void on their own.

If an edge between two voids cannot be covered, those two voids are combined.

If an edge between the outside and a void cannot be covered, the void is a pocket or a depression.

Pocket or Not I

Pockets or Not II

A non-obtuse triangle connected to the outside is automatically a pocket.

An obtuse triangle is a pocket if the triangle it is connected to is a pocket.

Volume, Area, etc.

To measure area of a void simply sum the areas of all the triangles comprising the void, then subtract the area of the sections of the balls within the void.

Ditto for anything else.

PocketFinder

Steps:

1. Create grid potential map of van der Waals force field
2. Apply threshold to keep grid cells with high values
3. Eliminate small pockets (<100 Å)

$$
\begin{gathered}
P_{p}^{0}=\sum_{i=1}^{N}\left(\frac{A_{X, C}}{r_{p l}^{12}}-\frac{B_{X, C}}{r_{p l}^{6}}\right) \\
\text { Lenert-Jones } \\
\text { Potential }
\end{gathered}
$$

PocketFinder

Steps:

1. Create grid potential map of van der Waals force field
2. Apply threshold to keep grid cells with high values
3. Eliminate small pockets (<100 Å)
$P_{p}^{0}=\sum_{i=1}^{N}\left(\frac{A_{X, C}}{r_{p l}^{12}}-\frac{B_{X, C}}{r_{p l}^{6}}\right)$
Lenert-Jones
Potential

Outline

Introduction
Binding site representations
Binding site localization methods

- Geometric
- Evolutionary
- Chemical

Evaluation methods \longleftarrow
Discussion

General Evaluation Method

Gather a set of PDB files

- Both bound and unbound (with homologues)

Predict binding sites (clefts, pockets)

- Output is usually grid, polyhedron, set of spheres

Report results

- Measure properties of predicted binding sites
- Test how well predictions match bound ligands

Surfnet

突

LIGSITE

CASTp

CAST has been compared to other pocket finding methods such as APROPOS and VOIDOO, and in general manages to find more "correct" binding sites.

	\# of cavities	
Protein	VOLBL	Rashin
leca	10	9
1nxb	3	0
2act	20	21
2cha	23	26
2lyz	12	8
2ptn	19	13
2sn3	2	2
3cyt	8	5
3m3	4	5
4pti	2	2
5 mbn	17	23
8tln	42	30

PocketFinder

Unliganded-pocket data set

- Align unliganded PDB files with liganded ones
- Single chain proteins
- 95% < sequence identity
- No mutations on surface within $8 \AA ̊$ of ligand
- No other ligands within $8 \AA ̊$ of ligand
- $2.5 \AA$ < resolution

PocketFinder

PocketFinder

PocketFinder

References

```
[An04] J. An, M. Totrov, R. Abagyan, "Comprehensive Identification of "Druggable" Protein Ligand Binding
Site,"" Genome Informatics, 15, 2, 2004, pp. 31-41
[Brady00] G.P. Brady, Jr., P.E.W. Stouten, "Fast prediction and visuali zation of protein binding pockets with
    M,
[Hendlich97] M. Hendlich, F. Rippman, G. Barnickel, "LIGSITE: automatic and efficient detection of0ential
small molecule-binding sites in proteins," J. Mol. Graph., 15, 1997, pp. 359-363.
[Laskowski95] R.A. Laskowski, "Surfnet: a program for visualizing molecular surfaces, cavities, and
[Laskowski96a] R A Laskowski N.M.Luccombe M.B. Swindells, IM. Thorn
```



```
[Laurie05] A.T.R. Laurie, R.M. Jackson, "Q-SiteFinder: an energy-based method for the prediction of protein-
ligand binding sites,"Bioinformatics, 200.
[Liang98a] J. Liang, H. Edelsbrunner, P. Fu, P.V. Sudhakar, S. Subramaniam, "Analytical shape computing of
Mmacromolecules I: molecular area and volume through alpha "Aape," Proteins, 33, 1998, pp. 1-f
macromolecules II: identification and computation of inaccessible cavities inside proteins,"
    Proteins, 33, 1998, pp. 18-29.
[Liang98c] J. Liang. H. Edelsbrunner,, C. Woodward, "Anatomy of protein pockets and cavities: Measurement of
    binding site geometry and implications for ligand design," Protein Science, 7, 1998, pp. 1884-
1897
[Peters96] K.P. Peters, J. Fauck, C. Frommel, "The automatic search for ligand binding sites in proteins of known
    three-dimensional structure using only geometric criteria,"J Mol Biol, 256, 1996, pp. 201-213. .
```

