

Terminology Superposition

• Given correspondences, compute optimal alignment transformation, and compute alignment score

Alignment

• Find correspondences, and then superpose structures

Goals

Desirable properties:

- Automatic
- Discriminating
- Fast

Methodological Issues

- Choices:
- Representation
- Scoring functionSearch algorithm

Methodological Issues

Factors governing choices:

- Application: homology detection, drug design, etc.
- Granularity: atom, residue, fragment, SSE
- Representation: inter-molecular, intra-molecular
- Scoring: geometric, gaps, chemical, structural, etc.
- Correspondences: sequential, non-sequential
- Gap penalty: expect gaps near loops, etc.
- Flexibility: rigid, flexible
- Target: single protein, representative proteins, PDB

Methodological Issues

Representations:

- Residue positions
- Local geometry
- Side chain contacts
- Distance matrices (DALI)
- Properties (COMPARER)
- SSEs (SSM, VAST)
- Geometric invariants

SSAP	Taylor & Orengo, 1989		
STRUCTAL	Subbiah, Laurents & Levitt, 1993 Gerstein & Levitt 1998		
DALI	Holm & Sander, 1993 Holm & Park, 2000		
DEJAVU /LSQMAN	Kleywegt, 1996		
CE	Shindyalov & Bourne, 1998		
SSM	Krissinel & Henrick, 2003		

- Two-step solution:
 - 1. Graph representation of structures
 - 2. Graph matching

SSM

SSM output

- Table of matched Secondary Structure Elements (SSE alignment)
- Table of matched core atoms (C_a - alignment) with dists between them
- Rotational-translation matrix of best structure superposition
- R.m.s.d. of C_a alignment
- Length of C_a alignment N_a
- Number of gaps in C_a alignment N_g
- Quality score Q
- Probability estimate for the match P_M
- Z characteristics
- Sequence identity

Slide by Eugene Krissnel

Fold Prediction Experiments

Kolodny, Koehl, & Levitt [2005] • ROC curves and geometric measures using CATH

Sierk & Pearson [2004] • ROC curves using CATH

Novotny et al. [2004] • Checked a few dozen cases using CATH

Leplae & Hubbard [2002] • ROC curves using SCOP

Kolodny, Koehl, & Levitt [2005]

Large scale alignment study

- 2,930 structures (all pairs)
- 6 structural alignment algorithms
- 4 geometric scoring functions
- Evaluation with respect to CATH topology level
- 20,000 hours of compute time

Tested Methods

SSAP	Taylor & Orengo, 1989	
STRUCTAL	Subbiah, Laurents & Levitt, 1993 Gerstein & Levitt 1998	
DALI	Holm & Sander, 1993 Holm & Park, 2000	
DEJAVU /LSQMAN	Kleywegt, 1996	
CE	Shindyalov & Bourne, 1998	
SSM	Krissinel & Henrick, 2003	
Best-of-All	Best of above methods	

Function Prediction Experiment

t 🔊

Evaluate how useful alignment methods are for predicting a protein's molecular function

How?

Data Set

Proteins crystallized with bound ligands

- PDB file must have resolution ≤3 Angstroms
- Ligands must have ≥20 HETATOMS

Classified by reaction/reactant

- PDB file must have an EC number (enzymes only)
- EC number must have a KEGG reaction with a reactant whose graph closely matches ligand in PDB file

Non-redundant

- \bullet No two ligands contacting domains with same CATH S95
- No two ligands contacting domains with same SCOP SP
- No two ligands from same PDB file

Use FASTA to compute Smith-Waterman score for every pair of SCOP domains contacting ligand

 $D(A,B) = 1/\max SmithWaterman(A_i, B_j)_{A_i \in A, B_j \in B}$

SCOP Matching	g Result	s 🧕
	FASTA CE SCOP CATH	= 72% = 72% = 65%
	When Sn	nith-Waterman < 500:
	CE	= 53%
	SCOP	
	CATH	
	FASTA	= 44%
	Random	= <1%

Conclusion

Many algorithms for structural alignment, differing according to

- Application: homology detection, drug design, etc.
 Granularity: atom, residue, fragment, SSE
 Representation: inter-molecular, intra-molecular

- Scoring: geometric, gaps, chemical, structural, etc.
 Correspondences: sequential, non-sequential
 Gap penalty: expect gaps near loops, etc.
 Flexibility: rigid, flexible

- Target: single protein, representative proteins, PDB

None seems best for all situations All probably provide some benefit over sequence