

Structure vs. Sequence

Theoretical Issues
NP-complete problem

- Arbitrary gap lengths
- Global scoring function
$\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$ PHE ASP ILE CYS ARG LEU PRO GLY SER ALA GLU ALA VAL CY PHE ASN VAL CYS ARG THR PRO --- --- --- GLU ALA ILE CYS PHE ASN VAL CYS ARG --- --- --- THR PRO GLU ALA ILE CYS

Methodological Issues

Factors governing choices:

?

Methodological Issues

Representations:

- Residue positions
- Local geometry
- Side chain contacts
- Distance matrices (DALI)
- Properties (COMPARER)
- SSEs (SSM, VAST)
- Geometric invariants

SSM

SSM

SSM

Statistical significance of match

- The overall probability of getting a particular match score by chance is the measure of the statistical significance of the match
$P_{\text {value }}=1-\left(1-P\left(S_{N_{a}}\right) P\left(S_{r . m . s . d .}\right) \prod_{S S E} P\left(S_{S S E}\right)\right)^{N_{\text {combinations }}}$
- P_{M} is traditionally expressed through so-called Z-characteristics

SSM Results

Outline

Alignment issues
Example alignment methods
Fold prediction experiment \longleftarrow
Function prediction experiment

Fold Prediction Experiments

Fold Prediction Experiments
Kolodny, Koehl, \& Levitt [2005] ఒ

- ROC curves and geometric measures using CATH

Sierk \& Pearson [2004]

- ROC curves using CATH

Novotny et al. [2004]

- Checked a few dozen cases using CATH

Leplae \& Hubbard [2002]

- ROC curves using SCOP

Kolodny, Koehl, \& Levitt [2005]
Large scale alignment study

- 2,930 structures (all pairs)
- 6 structural alignment algorithms
- 4 geometric scoring functions
- Evaluation with respect to CATH topology level
- 20,000 hours of compute time

Scoring Functions

Consider \# aligned residues \& geometric similarity:

$$
S A S=\frac{R M S D \times 100}{N_{m a t}}
$$

Also penalize gaps:

Outline

Alignment issues
Example alignment methods
Fold prediction experiment
Function prediction experiment \longrightarrow

Data Set

Proteins crystallized with bound ligands

- PDB file must have resolution ≤ 3 Angstroms
- Ligands must have ≥ 20 HETATOMS

Classified by reaction/reactant

- PDB file must have an EC number (enzymes only)
- EC number must have a KEGG reaction with a reactant whose graph closely matches ligand in PDB file
Non-redundant
- No two ligands contacting domains with same CATH S95
- No two ligands contacting domains with same SCOP SP
- No two ligands from same PDB file

Evaluation Method

"Leave-one-out" classification experiment
Match every ligand against all the others in data set

- Log a "hit" when best match performs same reaction
- Report percentage of hits (correctly classified ligands)

Evaluation Method

"Leave-one-out" classification experiment Match every ligand against all the others in data set

- Log a "hit" when best match performs same reaction
- Report percentage of hits (correctly classified ligands)

Sequence Alignment Method

Use FASTA to compute Smith-Waterman score for every pair of SCOP domains contacting ligand

fasta34 d1gvoa d1gura

 d1gvoa ELVERTRTGGAEIVNHLKQGSAFYSPATSVVEMVESIVLDRKRVLTCAVSLDGYGIDGT d1guya QIVERTRKGGGIVNLLKTGSAYYAPAAATAQMVEAVLKDKKRVMP VAAYLTGYYGLNDI

54.487% identity
156 out of 163 amino acids overlap
Smith-Waterman score: 588

Sequence Alignment Method

Use FASTA to compute Smith-Waterman score for every pair of SCOP domains contacting ligand
$D(A, B)=1 /$ max $\operatorname{SmithWaterman}\left(A_{i}, B_{j}\right)_{A_{\epsilon} \in A, B \in B}$

Sequence Alignment Method
Use FASTA to compute Smith-Waterman score for every pair of SCOP domains contacting ligand

Sequence Alignment Results

Sequence Alignment Results

Structure Alignment Results

Classification rate:
FASTA = 68\%
CE $=65 \%$
Random = $<1 \%$

Structure Alignment Results	
Classification rate FASTA $=68 \%$ CE $=65 \%$ Random = $<1 \%$	```When Smith-Waterman \(\geq 500\) : Sequence = 80\% CE \(\quad=72 \%\) Random = \(<1 \%\)```
	When Smith-Waterman < 500: CE =53\% FASTA $=44 \%$ Random $=<1 \%$

Conclusion

Many algorithms for structural alignment, differing according to

- Application: homology detection, drug design, etc.
- Granularity: atom, residue, fragment, SSE
- Representation: inter-molecular, intra-molecular
- Scoring: geometric, gaps, chemical, structural, etc.
- Correspondences: sequential, non-sequential
- Gap penalty: expect gaps near loops, etc.
- Flexibility: rigid, flexible
- Target: single protein, representative proteins, PDB

None seems best for all situations
All probably provide some benefit over sequence

