
Design of Data Structures for Mergeable Trees∗

Loukas Georgiadis1, 2 Robert E. Tarjan1, 3 Renato F. Werneck1

Abstract

Motivated by an application in computational topology,

we consider a novel variant of the problem of efficiently

maintaining dynamic rooted trees. This variant allows an

operation that merges two tree paths. In contrast to the

standard problem, in which only one tree arc at a time

changes, a single merge operation can change many arcs.

In spite of this, we develop a data structure that supports

merges and all other standard tree operations in O(log2
n)

amortized time on an n-node forest. For the special case

that occurs in the motivating application, in which arbitrary

arc deletions are not allowed, we give a data structure with

an O(log n) amortized time bound per operation, which is

asymptotically optimal. The analysis of both algorithms is

not straightforward and requires ideas not previously used in

the study of dynamic trees. We explore the design space of

algorithms for the problem and also consider lower bounds

for it.

1 Introduction and Overview

A heap-ordered forest is a set of node-disjoint rooted
trees, each node v of which has a real-valued label `(v)
satisfying heap order : for every node v with parent p(v),
`(v) ≥ `(p(v)). We consider the problem of maintaining
a heap-ordered forest, initially empty, subject to a
sequence of the following kinds of operations:

• parent(v): Given a node v, return its parent, or null
if it is a root.

• nca(v, w): Given nodes v and w, return the nearest
common ancestor of v and w, or null if v and w are
in different trees.

• make(v, x): Create a new, one-node tree consisting
of node v with label x.

• link(v, w): Given a root v and a node w such that
`(v) ≥ `(w) and w is not a descendent of v, combine
the trees containing v and w by making w the parent
of v.

∗Research partially supported by the Aladdin Project, NSF

Grant No 112-0188-1234-12.
1Dept. of Computer Science, Princeton University, Princeton,

NJ 08544. {lgeorgia,ret,rwerneck}@cs.princeton.edu.
2Current address: Dept. of Computer Science, University of

Aarhus. IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
3Office of Strategy and Technology, Hewlett-Packard, Palo

Alto, CA, 94304.

• delete(v): Delete leaf v from the forest.

• merge(v, w): Given nodes v and w, let P be the path
from v to the root of its tree, and let Q be the path
from w to the root of its tree. Restructure the tree
or trees containing v and w by merging the paths P
and Q in a way that preserves the heap order. The
merge order is unique if all node labels are distinct,
which we can assume without loss of generality: if
necessary, we can break ties by node identifier. See
Figure 1.

merge(7,8)

merge(6,11)

9

8

7

4

11

610

5

3

2

1
98

4

7

11

610

5

3

2

1
1110

5

98

4

2

76

3

1

Figure 1: Two successive merges. The nodes are
identified by label.

We call this the mergeable trees problem. In stating
complexity bounds we denote by n the number of make
operations (the total number of nodes) and by m the
number of operations of all kinds; we assume n ≥ 2.
Our motivating application is an algorithm of Agarwal
et al. [2] that computes the structure of 2-manifolds
embedded in R3. In this application, the tree nodes are
the critical points of the manifold (local minima, local
maxima, and saddle points), with labels equal to their
heights. The algorithm computes the critical points
and their heights during a sweep of the manifold, and
pairs up the critical points into so-called critical pairs
using mergeable tree operations. This use of mergeable
trees is actually a special case of the problem: parent,
nca, and merge are applied only to leaves, link is used

only to attach a leaf to a tree, and each nca(v, w) is
followed immediately by merge(v, w). None of these
restrictions simplifies the problem significantly except
for the restriction of merges to leaves. Since each such
merge eliminates a leaf, there can be at most n − 1
merges. Indeed, in the 2-manifold application the total
number of operations, as well as the number of merges,
is O(n). On the other hand, if arbitrary merges can
occur, the number of merges can be Θ(n2).

The mergeable trees problem is a new variant of the
well-studied dynamic trees problem. This problem calls
for the maintenance of a forest of rooted trees subject
to make and link operations as well as operations of the
following kind:

• cut(v): Given a nonroot node v, make it a root by
deleting the arc connecting v to its parent, thereby
breaking its tree in two.

The trees are not (necessarily) heap-ordered and
merges are not supported as single operations. Instead,
each node and/or arc has some associated value or
values that can be accessed and changed one node
and/or arc at a time, an entire path at a time, or even
an entire tree at a time. For example, in the original
application of dynamic trees [21], which was to network
flows, each arc has an associated real value representing
a residual capacity. The maximum value of all arcs on
a path can be computed in a single operation, and a
constant can be added to all arc values on a path in a
single operation. There are several known versions of
the dynamic trees problem that differ in what kinds of
values are allowed, whether values can be combined over
paths or over entire trees at a time, whether the trees are
unrooted, rooted, or ordered, and what operations are
allowed. For all these versions of the problem, there are
algorithms that perform a sequence of tree operations in
O(log n) time per operation, either amortized [22, 25],
worst-case [3, 12, 21], or randomized [1].

The main novelty, and the main difficulty, in the
mergeable trees problem is the merge operation. Al-
though dynamic trees support global operations on node
and arc values, the underlying trees change only one arc
at a time, by links and cuts. In contrast, a merge opera-
tion can delete and add many arcs (even Θ(n)) simulta-
neously, thereby causing global structural change. Nev-
ertheless, we have developed an algorithm that performs
a sequence of mergeable tree operations in O(log n)
amortized time per operation, matching the best bound
known for dynamic trees. The time bound depends on
the absence of arbitrary cut operations, but the algo-
rithm can handle all the other operations that have been
proposed for dynamic (rooted) trees. A variant of the
algorithm can handle arbitrary cuts as well, but the

amortized time bound per operation becomes O(log2 n).
Both the design and the analysis of our algorithms re-
quire new ideas that have not been previously used in
the study of the standard dynamic trees problem.

This paper is organized as follows. Section 2 intro-
duces some terminology used to describe our algorithms.
Section 3 shows how to extend Sleator and Tarjan’s
data structure for dynamic trees to solve the mergeable
trees problem in O(log2 n) amortized time per opera-
tion. Section 4 presents an alternative data structure
that supports all operations except cut in O(log n) time.
Section 5 discusses lower bounds, and Section 6 contains
some final remarks.

2 Terminology

We consider forests of rooted trees, heap-ordered with
respect to distinct node labels. We view arcs as being
directed from child to parent, so that paths lead from
leaves to roots. A vertex v is a descendent of a vertex
w (and w is an ancestor of v) if the path from v to
the root of its tree contains w. (This includes the case
v = w.) If v is neither an ancestor nor a descendent of
w, then v and w are unrelated. We denote by size(v) the
number of descendents of v, including v itself. The path
from a vertex v to a vertex w is denoted by P [v, w]. We
denote by P [v, w) the subpath of P [v, w] from v to the
child of w on the path; if v = w, this path is empty. By
extension, P [v, null) is the path from v to the root of its
tree. Similarly, P (v, w] is the subpath of P [v, w] from
its second node to w, empty if v = w. Along a path P ,
labels strictly decrease. We denote by bottom(P) and
top(P) the first and last vertices of P , respectively. The
length of P , denoted by |P |, is the number of arcs on
P . The nearest common ancestor of two vertices v and
w is bottom(P [v,null) ∩ P [w,null)); if the intersection
is empty (that is, if v and w are in different trees), then
their nearest common ancestor is null.

3 Mergeable Trees via Dynamic Trees

The dynamic tree (or link-cut tree) data structure of
Sleator and Tarjan [21, 22] represents a forest to which
arcs can be added (by the link operation) and removed
(by the cut operation). These operations can happen
in any order, as long as the existing arcs define a
forest. The primary goal of the data structure is to
allow efficient manipulation of paths. To this end, the
structure implicitly maintains a partition of the arcs into
solid and dashed. The solid arcs partition the forest into
node-disjoint paths, which are interconnected by the
dashed arcs. To manipulate a specific path P [v,null),
this path must first be exposed, which is done by making
all its arcs solid and all its incident arcs dashed. Such
an operation is called exposing v.

An expose operation is performed by doing a se-
quence of split and join operations on paths. The oper-
ation split(Q, x) is given a path Q = P [v, w] and a node
x on Q. It splits Q into R = P [v, x] and S = P (x,w]
and then returns the pair (R,S). The inverse operation,
join(R,S), is given two node-disjoint paths R and S. It
catenates them (with R preceding S) and then returns
the catenated path. Sleator and Tarjan proved that a
sequence of expose operations can be done in an amor-
tized number of O(log n) joins and splits per expose.
Each operation on the dynamic tree structure requires
a constant number of expose operations.

To allow join and split operations (and other oper-
ations on solid paths) to be done in sublinear time, the
algorithm represents the actual forest by a virtual for-
est, containing the same nodes as the actual forest but
with different structure. Each solid path P is repre-
sented by a binary tree, with bottom-to-top order along
the path corresponding to symmetric order in the tree.
Additionally, the root of the binary tree representing P
has a virtual parent equal to the parent of top(P) in
the actual forest (unless top(P) is a root in the actual
forest). The arcs joining roots of binary trees to their
virtual parents represent the dashed arcs in the actual
forest. For additional details see [22].

The running time of the dynamic tree operations
depends on the type of binary tree used to represent the
solid paths. Ordinary balanced trees (such as red-black
trees [15, 23]) suffice to obtain an amortized O(log2 n)
time bound per dynamic tree operation: each join or
split takes O(log n) time. Splay trees [23, 22] give a
better amortized bound of O(log n), because the splay
tree amortization can be combined with the expose
amortization to save a log factor. Sleator and Tarjan
also showed [21] that the use of biased trees [5] gives
an O(log n) time bound per dynamic tree operation,
amortized for locally biased trees and worst-case for
globally biased trees. The use of biased trees results
in a more complicated data structure than the use of
either balanced trees or splay trees, however.

Merge operations can be performed on a virtual tree
representation in a straightforward way. To perform
merge(v, w), we first expose v and then expose w.
As Sleator and Tarjan show [21], the nearest common
ancestor u of v and w can be found during the exposure
of w, without changing the running time by more than
a constant factor. Having found u, we expose it.
Now P [v, u) and P [w, u) are solid paths represented
as single binary trees, and we complete the merge
by combining these trees into a tree representing the
merged path. In the remainder of this section we focus
on the implementation and analysis of the path-merging
process.

3.1 Merging by Insertions. A simple way to merge
two paths represented by binary trees is to delete the
nodes from the shorter path one-by-one and successively
insert them into (the tree representing) the longer path,
as proposed in a preliminary journal version of [2].
This can be done with only insertions and deletions on
binary trees, thereby avoiding the extra complication of
joins and splits. (The latter are still needed for expose
operations, however.) Let pi and qi be the numbers
of nodes on the shorter and longer paths combined in
the i-th merge. If the binary trees are balanced, the
total time for all the merges is O(

∑

pi log(qi + 1)).
Even if insertions could be done in constant time, the
time for this method would still be Ω(

∑

pi). In the
preliminary journal version of [2], the authors claimed
an O(n log n) bound on

∑

pi for the case in which
no cuts occur. Unfortunately this is incorrect: even
without cuts,

∑

pi can be Ω(n3/2), and this bound is
tight (see Section A.1). We therefore turn to a more-
complicated but faster method.

3.2 Interleaved Merges. To obtain a faster algo-
rithm, we must merge paths represented by binary trees
differently. Instead of inserting the nodes of one path
into the other one-by-one, we find subpaths that remain
contiguous after the merge, and insert each of these sub-
paths as a whole. This approach leads to an O(log2 n)
time bound per operation.

This algorithm uses the following variant of the split
operation. If Q is a path with strictly decreasing node
labels and k is a label value, the operation split(Q, k)
splits Q into the bottom part R, containing nodes with
labels greater than or equal to k, and the top part
S, containing nodes with labels less than k, and then
returns the pair (R,S).

We implement merge(v, w) as before, first exposing
v and w and identifying their nearest common ancestor
u, and then exposing u itself. We now need to merge
the (now-solid) paths R = P [v, u) and S = P [w, u),
each represented as a binary tree. Let Q be the merged
path (the one we need to build). Q is initially empty.
As the algorithm progresses, Q grows, and R and S
shrink. The algorithm proceeds top-to-bottom along R
and S, repeatedly executing the appropriate one of the
following steps until all nodes are on Q:

1. If R is empty, let Q← join(S,Q).

2. If S is empty, let Q← join(R,Q).

3. If `(top(R)) > `(top(S)), remove the top portion of
S and add it to the bottom of Q. More precisely,
perform (S,A)← split(S, `(top(R))) and then Q←
join(A,Q).

4. If `(top(R)) < `(top(S)), perform the symmetric

steps, namely (R,A)← split(R, `(top(S))) and then
Q← join(A,Q).

To bound the running time of this method, we use
an amortized analysis [24]. Each state of the data
structure has a non-negative potential, initially zero.
We define the amortized cost of an operation to be its
actual cost plus the net increase in potential it causes.
Then the total cost of a sequence of operations is at
most the sum of their amortized costs.

Our potential function is a sum of two parts. The
first is a variant of the one used in [21] to bound the
number of joins and splits during exposes. The second,
which is new, allows us to bound the number of joins
and splits during merges (not counting the three exposes
that start each merge).

We call an arc (v, w) heavy if size(v) > size(w)/2
and light otherwise. This definition implies that each
node has at most one incoming heavy arc, and any tree
path contains at most lg n light arcs (where lg is the
binary logarithm). The expose potential of the actual
forest is the number of heavy dashed arcs. We claim
that an operation expose(v) that does k splits and joins
increases the expose potential by at most 2 lg n− k + 1.
Each split and join during the expose, except possibly
one split, converts a dashed arc along the exposed path
to solid. For each of these arcs that is heavy, the
potential decreases by one; for each of these arcs that
is light, the potential can go up by one, but there are
at most lg n such arcs. This gives the claim. The claim
implies that the amortized number of joins and splits
per expose is O(log n). An operation link(v, w) can
be done merely by creating a new dashed arc from v
to w, without any joins or splits. This increases the
expose potential by at most lg n: the only dashed arcs
that can become heavy are those on P [v,null) that were
previously light, of which there are at most lg n. A cut
of an arc (v, w) requires at most one split and can also
increase the expose potential only by lg n, at most one
for each newly light arc on the path P [w,null). Thus
the amortized number of joins and splits per link and
cut is O(log n). Finally, consider a merge operation.
After the initial exposes, the rest of the merge cannot
increase the expose potential, because all the arcs on
the merged path are solid, and arcs that are not on the
merged path can only switch from heavy to light, and
not vice-versa.

The second part of the potential, the merge poten-
tial, we define as follows. Given all the make opera-
tions, assign to each node a fixed ordinal in the range
[1, n] corresponding to the order of the labels. Identify
each node with its ordinal. The actual trees are heap-
ordered with respect to these ordinals, as they are with
respect to node labels. Assign each arc (x, y) a potential

of 2 lg(x− y). The merge potential is the sum of all the
arc potentials. Each arc potential is at most lg n, thus
a link increases the merge potential by at most lg n; a
cut decreases it or leaves it the same. An expose has
no effect on the merge potential. Finally, consider the
effect of a merge on the merge potential. If the merge
combines two different trees, it is convenient to view it
as first linking the tree root of larger label to the root
of smaller label, and then performing the merge. Such
a link increases the merge potential by at most lg n.
We claim that the remainder of the merge decreases the
merge potential by at least one for each arc broken by
a split.

To verify the claim, we reallocate the arc potentials
to the nodes, as follows: given an arc (x, y), allocate half
of its potential to x and half to y. No such allocation
can increase when a new path is inserted in place of an
existing arc during a merge, because the node difference
corresponding to the arc can only decrease. Suppose a
merge breaks some arc (x, y) by inserting some path
from v to w between x and y. Since x > v ≥ w > y,
either v ≥ (x + y)/2 or w ≤ (x + y)/2, or both. In the
former case, the potential allocated to x from the arc to
its parent (y originally, v after the merge) decreases by
at least one; in the latter case, the potential allocated
to y from the arc from its child (x originally, w after
the merge) decreases by at least one. In either case, the
merge potential decreases by at least one.

Combining these results, we obtain the following
lemma:

Lemma 3.1. The amortized number of joins and splits
is O(log n) per link, cut, and expose, O(log n) per
merge that combines two trees, and O(1) for a merge
that does not combine two trees.

Lemma 3.1 gives us the following theorem:

Theorem 3.1. If solid paths are represented as bal-
anced trees, biased trees or splay trees, the amortized
time per mergeable tree operation is O(log2 n).

Proof. The time per binary tree operation for balanced
trees, biased trees or splay trees is O(log n). The
theorem follows from Lemma 3.1 and the fact that O(1)
exposes are needed for each mergeable tree operation.2

For an implementation using balanced trees, our
analysis is tight: for any n, there is a sequence of
Θ(n) make and merge operations that take Ω(n log2 n)
time. For an implementation using splay trees or biased
trees, we do not know whether our analysis is tight;
it is possible that the amortized time per operation is
O(log n). We can obtain a small improvement for splay

trees by using the amortized analysis for dynamic trees
given in [22] in place of the one given in [21]. With this
idea we can get an amortized time bound of O(log n)
for every mergeable tree operation, except for links and
merges that combine two trees; for these operations,
the bound remains O(log2 n). The approach presented
here can also be applied to other versions of dynamic
trees, such as top trees [3], to obtain mergeable trees
with an amortized O(log2 n) time bound per operation.

4 Mergeable Trees via Partition by Rank

The path decomposition maintained by the algorithm
of Section 3.2 is structurally unconstrained; it depends
only on the sequence of tree operations. If arbitrary
cuts are disallowed, we can achieve a better time bound
by maintaining a more-constrained path decomposition.
The effect of the constraint is to limit the ways in which
solid paths change. Instead of arbitrary joins and splits,
the constrained solid paths are subject only to arbitrary
insertions of single nodes, and deletions of single nodes
from the top.

We define the rank of a vertex v by rank(v) =
blg size(v)c. To decompose the forest into solid paths,
we define an arc (v, w) to be solid if rank(v) = rank(w)
and dashed otherwise. Since a node can have at most
one solid arc from a child, the solid arcs partition the
forest into node-disjoint solid paths. See Figure 2.

1(0)

2(1)1(0)

4(2)

5(2)

6(2)

7(2)

1(0)

1(0)

2(1)

3(1)

5(2)

6(2)

1(0)

2(1)

1(0)

1(0)1(0)1(0)

4(2)

6(2)

7(2)

16(4)

24(4)

Figure 2: A tree partitioned by size into solid paths,
with the corresponding sizes and, in parentheses, ranks.

The algorithm works essentially as before. To merge
v and w, we first ascend the paths from v and w to find
their nearest common ancestor u; then we merge the
traversed paths in a top-down fashion. We can no longer
use the expose operation, however, since the partition
of the forest into solid paths cannot be changed. Also,
we must update the partition as the merge takes place.
This requires keeping track of node ranks.

Section 4.1 describes the algorithm in more detail,
without specifying the data structure used to represent
solid paths. Interestingly, the set of operations needed

on solid paths is limited enough to allow their represen-
tation by data structures as simple as heaps (see Sec-
tion A.3). The data structures that give us the best
running times, however, are finger trees and splay trees.
We discuss their use within our algorithm in Sections 4.2
and 4.3.

4.1 Basic Algorithm

Nearest common ancestors. To find the nearest
common ancestor of v and w, we concurrently traverse
the paths from v and w bottom-up, rank-by-rank, and
stop when we reach the same solid path P (or null, if
v and w are in different trees). If x and y are the first
vertices on P reached during the traversals from v and
w, respectively, then the nearest common ancestor of v
and w is whichever of x and y has smaller label.

Each of these traversals visits a sequence of at most
1 + lg n solid paths linked by dashed arcs. To perform
nca in O(log n) time, we need the ability to jump in
constant time from any vertex on a solid path P to
top(P), and from there follow the outgoing dashed arc.
We cannot afford to maintain an explicit pointer from
each node to the top of its solid path, since removing
the top node would require updating more than a
constant number of pointers, but we can use one level
of indirection for this purpose. We associate with each
solid path P a record P ∗ that points to the top of P ;
every node in P points to P ∗. When top(P) is removed,
we just make P ∗ point to its (former) predecessor on P .
When an element is inserted into P , we make it point
to P ∗. With the solid path representations described
in Sections 4.2 and 4.3, both operations take constant
time.

Merging. The first pass of merge(v, w) is similar to
nca(v, w): we follow the paths from v and w bottom-up
until their nearest common ancestor u is found. Then we
do a second pass, in which we traverse the paths P [v, u)
and P [w, u) in a top-down fashion and merge them. To
avoid special cases in the detailed description of the
merging process, we assume the existence of dummy
leaves v′ and w’, children of v and w respectively, each
with label ∞ and rank −1. For a node x on P [v, u)
or P [w, u), we denote by pred(x) the node preceding x
on P [v, u) or P [w, u), respectively. To do the merging,
we maintain two current nodes, p and q. Initially, p =
top(P [v, u)) and q = top(P [w, u)); if rank(p) < rank(q),
we swap p and q, so that rank(p) ≥ rank(q). We also
maintain r, the bottommost node for which the merge
has already been performed. Initially r = u. The
following invariants will hold at the beginning of every
step: (1) the current forest is correctly partitioned into

solid paths; (2) rank(p) ≥ rank(q); (3) r is either null
or is the parent of both p and q. The last two invariants
imply that the arc from q to r, if it exists, is dashed.

To perform the merge, we repeat the appropriate
one of steps 1 and 2 below until p = v′ and q = w′. The
choice of step depends on whether p or q goes on top.

1. `(p) > `(q). The node with lower rank (q) will be on
top, with new rank rank ′(q)= blg(size(p)+size(q))c.
Let t = pred(q). Since rank ′(q) > rank(q), we
remove q from the top of its solid path and insert it
between p and r. There are two possibilities:

(a) If rank ′(q) < rank(r), the arc from q to r, if it
exists, will be dashed. If rank ′(q) > rank(p),
the arc from p to q will also be dashed, and q
forms a one-node solid path. Otherwise, we add
q to the top of the solid path containing p.

(b) If rank ′(q) = rank(r), we insert q into the solid
path containing r (just below r itself); the arc
from q to r will be solid.

In both cases, we set r ← q and q ← t.

2. `(p) < `(q). The node with higher rank (p) goes on
top. Let rank ′(p) = blg(size(p) + size(q))c be the
rank of p after the merge. We must consider the
following subcases:

(a) rank ′(p) > rank(p): This case happens only if p
is the top of its solid path (otherwise the current
partition would not be valid). We remove it
from this path, and make the arc from t =
pred(p) to p dashed, if it is not dashed already.

i. If rank ′(p) = rank(r), we insert p into the
solid path containing r (note that r cannot
have a solid predecessor already, or else its
rank would be greater than rank ′(p)).

ii. If rank ′(p) < rank(r), we keep the arc from
p to r, if it exists, dashed.

We then set r ← p and p← t.

(b) rank ′(p) = rank(p): p remains on the same solid
path (call it P). Let e be the first (lowest) vertex
on P reached during the traversal from v and w
and let t = pred(e). The arc (t, e) is dashed.
There are two subcases:

i. `(e) < `(q): e will be above q after the merge.
We set r ← e and p← t.

ii. `(e) > `(q): we perform a search on P
for the bottommost vertex x whose label is
smaller than `(q). We set r ← x and set
p← pred(x). The new node p is on P .

In all cases above, we make q a (dashed) child of the
new r. If now rank(p) < rank(q) (which can only
happen if the arc from p to r is dashed), we swap
pointers p and q to preserve Invariant (2).

Maintaining sizes. The algorithm makes some deci-
sions based on the value of blg(size(p) + size(q))c. We
cannot maintain all node sizes explicitly, since many
nodes may change size during each merge operation.
Fortunately, the only sizes actually needed are those of
the top vertices of solid paths. This is trivially true for
q. For p, we claim that, if the arc from p to r is solid,
then blg(size(p)+size(q))c = rank(p). This follows from
rank(p) ≤ blg(size(p) + size(q))c ≤ rank(r) = rank(p),
since p is a child of r, and p and r are on the same solid
path.

These observations are enough to identify when
cases 1(a) and 2(a) apply, and one can decide between
the remaining cases (1(b) and 2(b)) based only on node
labels. Therefore, we keep explicitly only the sizes of
the top nodes of the solid paths. To update these
efficiently, we also maintain the dashed size of every
vertex x, defined to be the sum of the sizes of the
dashed children of x (i.e., the children connected to x
by a dashed arc) plus one (which accounts for x itself).
These values can be updated in constant time whenever
the merging algorithm makes a structural change to the
tree. Section A.2 explains how.

Complexity. To simplify our analysis, we assume that
there are no leaf deletions. We discuss leaf deletions
in Section 4.4. The running time of the merging
procedure depends on which data structure is used to
represent solid paths. But at this point we can at least
count the number of basic operations performed. There
will be at most O(n log n) removals from the top of a
solid path, since they only happen when a node rank
increases. Similarly, there will be at most O(n log n)
insertions. The number of searches (case 2(b)ii) will also
be O(n log n), since every search precedes an insertion
of q, and therefore an increase in rank. The only case
unaccounted for is 2(b)i, which will happen at most
O(log n) times per operation, taking O(m log n) time
in total. This is also the time for computing nearest
common ancestors.

4.2 Solid Paths as Finger Trees. We show how to
achieve an O(log n) amortized bound per operation by
representing each solid path as a finger search tree [7, 26]
(finger tree for short). A finger tree is a balanced search
tree that supports fast access in the vicinity of certain
preferred positions, indicated by pointers called fingers.
Specifically, if there are d items between the target

and starting point (i.e., an item with finger access),
then the search takes O(log (d + 2)) time. Furthermore,
given the target position, finger trees support insertions
and deletions in constant amortized time. (Some finger
trees achieve constant-time finger updates in the worst
case [11, 6].) When solid paths are represented as
ordinary balanced binary trees, the cost of inserting a
node w into a path P is proportional to log |P |. With
finger trees, this cost is reduced to O(log(|P [v, x]|+2)),
where w is inserted just below v and x is the most-
recently-accessed node of P (unless w is the first node
inserted during the current merge operation, in which
case x = top(P)). We refer to P [v, x] as the insertion
path of w into P . After w is inserted, it becomes the
most-recently-accessed node. To bound the running
time of the merging algorithm, we first give an upper
bound on the sum of the logarithms of the lengths of
all insertion paths during the sequence of merges. We
denote this sum by L.

Lemma 4.1. For any sequence of merge operations,
L = O(n log n).

Proof. Let P and Q be two solid paths being merged,
with rank(P) = rp ≥ rank(Q) = rq (i.e., nodes of
Q are inserted into P). Let J be the set of integers
in [0, dlg lg ne], and let j be any integer in J . Define
β(j) = 2j . We consider insertions that satisfy:

β(j) ≤ rp − rq < β(j + 1).(4.1)

Every element of Q that gets inserted into P
increases its rank by at least β(j); hence there can
be at most (n lg n)/β(j) such insertions. Let δ(j) be
the fraction of these insertions that actually occur, and
let λ(j) = (δ(j)n lg n)/β(j) be the number of actual
insertions that satisfy condition (4.1). Since the total
number of rank increases is at most n lg n, we have

∑

j∈J

λ(j)β(j) ≤ n lg n⇒
∑

j∈J

δ(j) ≤ 1.(4.2)

Next we calculate an upper bound for the total
length of the insertion paths that satisfy (4.1). When-
ever a node x is included in such an insertion path, it ac-
quires at least 2rq descendants. Since rp−rq < β(j+1),
x can be on at most 2β(j+1) such paths while maintain-
ing rank rp. Then the total number of occurrences of
x on all insertion paths that satisfy (4.1) is at most
(lg n)2β(j+1), since the rank of a node can change at
most lg n times. This implies an overall bound of
(n lg n)2β(j+1). This length is distributed over λ(j) in-
sertions and, because the log function is concave, the
sum S(j) of the logarithms of the lengths of the inser-

tion paths is bounded above by

S(j) ≤ λ(j) lg
(n lg n)2β(j+1)

λ(j)

= δ(j)
n lg n

β(j)
lg

β(j)22β(j)

δ(j)

< δ(j)
n lg n

β(j)
lg

23β(j)

δ(j)

≤ n lg n

β(j)
δ(j) lg

1

δ(j)
+ 3δ(j)n lg n

≤ n lg n

(

1

β(j)
+ 3δ(j)

)

.

We need to bound the sum of this expression for all j.
The 1/β(j) terms form a geometric series that sums to
at most 2. The 3δ(j) terms add up to at most 3 by
Inequality 4.2. Therefore, L ≤ 5n lg n. 2

Lemma 4.2. Any sequence of m merge and nca opera-
tions takes O((n + m) log n) time.

Proof. We have already established that each nca query
takes O(log n) time, so we only have to bound the time
necessary to perform merges. According to our previous
analysis, there are at most O(n log n) insertions and
deletions on solid paths. Finger trees allow each to be
performed in constant amortized time, as long as we
have a finger to the appropriate position. Lemma 4.1
bounds the total time required to find these positions
by O(n log n), which completes the proof. 2

This lemma implies an O(log n) amortized time
bound for every operation but cut. The analysis for the
remaining operations is trivial; in particular, link can
be interpreted as a special case of merge. This bound is
tight for data structures that maintain parent pointers
explicitly: there are sequences of operations in which
parent pointers change Ω(n log n) times.

4.3 Solid Paths as Splay Trees. The bound given
in Lemma 4.2 also holds if we represent each solid path
as a splay tree. To prove this, we have to appeal to
Cole’s dynamic finger theorem for splay trees:

Theorem 4.1. [9, 8] The total time to perform mt

accesses (including inserts and deletes) on an arbi-
trary splay tree t, initially of size nt, is O(mt + nt +
∑mt

j=1 log (dt(j) + 2)), where, for 1 ≤ i ≤ mt, the j-th
and (j − 1)-st accesses are performed on items whose
distance in the list of items stored in the splay tree is
dt(j). For j = 0, the j-th item is interpreted to be the
item originally at the root of the splay tree.

To bound the total running time of our data struc-
ture we simply add the contribution of each solid path
using the bound given in the theorem above. (We
also have to consider the time to find the nearest com-
mon ancestors, but this has already been bounded by
O(m log n).) Moreover,

∑

t(nt + mt) = O(n log n),
where the sum is taken over all splay trees (i.e., solid
paths) ever present in the virtual tree. Finally, we
can use Lemma 4.1 to bound

∑

t

∑

j(log (dt(j) + 2))
by O(n log n). Note, however, that we cannot apply
the lemma directly: it assumes that the most-recently-
accessed node at the beginning of a merge is the top
vertex of the corresponding solid path. In general, this
does not coincide with the root of the corresponding
splay tree, but it is not hard to prove that the bound
still holds.

4.4 Leaf Deletions. Although the results of Sec-
tions 4.2 and 4.3 do not (necessarily) hold if we allow
arbitrary cuts (because the ranks can decrease), we can
in fact allow leaf deletions. The simplest way to han-
dle leaf deletions is merely to mark leaves as deleted,
without otherwise changing the structure. Then a leaf
deletion takes O(1) time, and the time bounds for the
other operations are unaffected.

5 Lower Bounds

A data structure that solves the mergeable trees prob-
lem can be used to sort a sequence of numbers. Given
a sequence of n values, we can build a tree in which
each value is associated with a leaf directly connected
to the root. If we merge pairs of leaves in any order,
after n− 1 operations we will end up with the values in
sorted order. As a result, any lower bound for sorting
applies to our problem. In particular, in the comparison
and pointer machine models, a worst-case lower bound
of Ω(n log n) for executing n operations holds, and the
data structures of Sections 4.2 and 4.3 are optimal.

This lower bound is not necessarily valid if we
are willing to forgo the parent operation (as in the
case of Agarwal et al.’s original problem), or consider
more powerful machine models. Still, we can prove
a superlinear lower bound in the cell-probe model of
computation [31, 13], which holds even for the restricted
case in which only the nca and merge operations are
supported, and furthermore the arguments of merges
are always leaves. This result follows from a reduction
of the boolean union-find problem to the mergeable
trees problem. The boolean union-find problem is
that of maintaining a collection of disjoint sets under
two operations: union(A,B,C), which creates a new
set C representing the union of sets A and B (which
are destroyed), and find(x,A), which returns true if x

belongs to set A and false otherwise. Kaplan, Shafrir,
and Tarjan [17] proved an Ω(mα(m,n, log n)) lower
bound for this problem in the cell probe model with cells
of size log n. Here n is the total number of elements and
m is the number of find operations. Function α(m,n, `)
is defined as min{k : Ak(dm/ne) > `}, where Ak(·) is
the k-th row of Ackermann’s function.

We can solve this problem using mergeable trees
as follows. Start with a tree with n leaves directly
connected to the root. Each leaf represents an element
(the root does not represent anything in the original
problem). As the algorithm progresses, each path from
a leaf to the root represents a set whose elements are the
vertices on the path (except the root itself). Without
loss of generality, we use the only leaf of a set as
its unique identifier. To perform union(A,B,C), we
execute merge(A,B) and set C ← max{A,B}. To
perform find(x,A), we perform v ← nca(x,A). If v = x,
we return true; otherwise v will be the root, and we
return false. This reduction also implies some tradeoffs
for the worst-case update (merge) time tu and the worst-
case query (nca) time tq. Again it follows from [17] that

for tu ≥ max{(140b
log n)ε, 140ε} we have tq = Ω(ε log n

(ε+1) log tu
).

Finally, we note that [19] gives an Ω(m log n) lower
bound for any data structure that supports a sequence
of m link and cut operations. This lower bound is
smaller by a log factor than our upper bound for any
sequence of m mergeable tree operations that contains
arbitrary links and cuts.

For completeness, we compare these lower bounds
to the complexity of m on-line nearest common ancestor
queries on a static forest of n nodes. For pointer
machines, Harel and Tarjan [16] give a worst-case
Ω(log log n) bound per query. An O(n + m log log n)-
time pointer-machine algorithm was given in [28]; the
same bound has been achieved for the case where
arbitrary links are allowed [4]. On RAMs, the static
on-line problem can be solved in O(n + m) time [16,
20]; when arbitrary links are allowed, the best known
algorithm runs in O(n + mα(m + n, n)) time [14].

6 Final Remarks

There are several important questions related to the
mergeable trees problem that remain open. Perhaps the
most interesting one is to devise a data structure that
supports all the mergeable tree operations, including
arbitrary cuts, in O(log n) amortized time. In this
most general setting only the data structure of Section
3.2 gives an efficient solution, supporting all operations
in O(log2 n) amortized time. The data structure of
Section 4 relies on the assumption that the rank of
each node is nondecreasing; in the presence of arbitrary
cuts (which can be followed by arbitrary links) explicitly

maintaining the partition by rank would require linear
time per link and cut in the worst case. We believe,
however, that there exists an optimal data structure
(at least in the amortized sense) that can support all
operations in O(log n) time. Specifically, we conjecture
that Sleator and Tarjan’s link-cut trees implemented
with splay trees do support m mergeable tree operations
(including cut) in O(m log n) time using the algorithm
of Section 3.2.

Another issue has to do with the definition of n. We
can easily modify our algorithms so that n is the number
of nodes in the current forest, rather than the total
number of nodes ever created. Whether the bounds
remain valid if n is the number of nodes in the tree or
trees involved in the operation is open.

Another direction for future work is devising data
structures that achieve good bounds in the worst case.
This would require performing merges implicitly.

The mergeable trees problem has several interesting
variants. When the data structure needs to support
only a restricted set of operations, it remains an open
question whether we can beat the O(log n) bound on
more powerful machine models (e.g. on RAMs). When
both merge and nca but not parent operations are
allowed, the gap between our current upper and lower
bounds is more than exponential.

Acknowledgement. We thank Herbert Edelsbrunner for
posing the mergeable trees problem and for sharing the
preliminary journal version of [2] with us.

References

[1] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and
S. L. M. Woo. Dynamizing static algorithms, with ap-
plications to dynamic trees and history independence.
In Proc. 15th ACM-SIAM Symp. on Discrete Algo-
rithms, pages 524–533, 2004.

[2] P. K. Agarwal, H. Edelsbrunner, J. Harer, and
Y. Wang. Extreme elevation on a 2-manifold. In Proc.
20th Symp. on Comp. Geometry, pages 357–365, 2004.

[3] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Tho-
rup. Maintaining diameter, center, and median of
fully-dynamic trees with top trees. Unpublished
manuscript, http://arxiv.org/abs/cs/0310065, 2003.

[4] S. Alstrup and M. Thorup. Optimal algorithms for
finding nearest common ancestors in dynamic trees.
Journal of Algorithms, 35:169–188, 2000.

[5] S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased
search trees. SIAM Journal of Computing, 14(3):545–
568, 1985.

[6] G. S. Brodal, G. Lagogiannis, C. Makris, A. Tsakalidis,
and K. Tsichlas. Optimal finger search trees in the
pointer machine. Journal of Computer and System
Sciences, 67(2):381–418, 2003.

[7] M. R. Brown and R. E. Tarjan. Design and analysis
of a data structure for representing sorted lists. SIAM
Journal on Computing, 9(3):594–614, 1980.

[8] R. Cole. On the dynamic finger conjecture for splay
trees. Part II: The proof. SIAM Journal on Computing,
30(1):44–85, 2000.

[9] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On
the dynamic finger conjecture for splay trees. Part I:
Splay sorting log n-block sequences. SIAM Journal on
Computing, 30(1):1–43, 2000.

[10] P. Dietz and D. Sleator. Two algorithms for maintain-
ing order in a list. In Proc. 19th ACM Symp. on Theory
of Computing, pages 365–372, 1987.

[11] P. F. Dietz and R. Raman. A constant update time
finger search tree. Information Processing Letters,
52(3):147–154, 1994.

[12] G. N. Frederickson. Data structures for on-line update
of minimum spanning trees, with applications. SIAM
Journal of Computing, 14:781–798, 1985.

[13] M. Fredman and M. Saks. The cell probe complexity
of dynamic data structures. In Proc. 21th ACM Symp.
on Theory of Computing, pages 345–354, 1989.

[14] H. N. Gabow. Data structures for weighted matching
and nearest common ancestors with linking. In Proc.
1st ACM-SIAM Symp. on Discrete Algorithms, pages
434–443, 1990.

[15] L. J. Guibas and R. Sedgewick. A dichromatic fram-
work for balanced trees. In Proc. 19th Symp. on Foun-
dations of Computer Science, pages 8–21, 1978.

[16] D. Harel and R. E. Tarjan. Fast algorithms for
finding nearest common ancestors. SIAM Journal on
Computing, 13(2):338–355, 1984.

[17] H. Kaplan, N. Shafrir, and R. E. Tarjan. Meldable
heaps and boolean union-find. In Proc. 34th ACM
Symp. on Theory of Computing, pages 573–582, 2002.

[18] K. Mehlhorn and S. Näher. Bounded ordered dictio-
naries in O(log log N) time and O(n) space. Informa-
tion Processing Letters, 35(4):183–189, 1990.

[19] Mihai Pătraşcu and Erik D. Demaine. Lower bounds
for dynamic connectivity. In Proc. 36th ACM Symp.
on Theory of Computing, pages 546–553, 2004.

[20] B. Schieber and U. Vishkin. On finding lowest common
ancestors: Simplification and parallelization. SIAM
Journal on Computing, 17(6):1253–1262, 1988.

[21] D. D. Sleator and R. E. Tarjan. A data structure
for dynamic trees. Journal of Computer and System
Sciences, 26:362–391, 1983.

[22] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. Journal of the ACM, 32(3):652–686, 1985.

[23] R. E. Tarjan. Data Structures and Network Algo-
rithms. SIAM Press, Philadelphia, PA, 1983.

[24] R. E. Tarjan. Amortized computational complexity.
SIAM J. Alg. Disc. Meth., 6(2):306–318, 1985.

[25] R. E. Tarjan and R. F. Werneck. Self-adjusting top
trees. In Proc. 16th ACM-SIAM Symp. on Discrete
Algorithms, pages 813–822, 2005.

[26] R. E. Tarjan and C. J. Van Wyk. An O(n log log n)-
time algorithm for triangulating a simple polygon.

SIAM Journal on Computing, 17(1):143–173, 1988.
[27] M. Thorup. On RAM priority queues. SIAM Journal

on Computing, 30(1):86–109, 2000.
[28] A. K. Tsakalides and J. van Leeuwen. An optimal

pointer machine algorithm for finding nearest com-
mon ancestors. Technical Report RUU-CS-88-17, U.
Utrecht Dept. of Computer Science, 1988.

[29] P. van Emde Boas. Preserving order in a forest in less
than logarithmic time and linear space. Information
Processing Letters, 6(3):80–82, 1977.

[30] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.
Mathematical Systems Theory, 10:99–127, 1977.

[31] A. Yao. Should tables be sorted? Journal of the ACM,
28(3):615–628, 1981.

A Appendix

A.1 Bounds on Iterated Insertions. This section
shows that there exists a sequence of operations on
which Agarwal et al.’s algorithm makes Θ(n

√
n) inser-

tions on binary trees. We start with a tree consisting of
2k + 1 nodes, v0, v1, . . ., v2k. For every i in [1, k], let
vi−1 be the parent of both vi and vk+i.

Consider a sequence of k−
√

k merges such that the
i-th merge combines vk+i with vk+i+

√
k (for simplicity,

assume k is a perfect square). In other words, we
always combine the topmost leaf with the leaf that is√

k levels below. On each merge, the longest path is the
one starting from the bottom leaf: it will have 1 +

√
k

arcs. The shortest path will have size 1 for the first√
k merges, 2 for the following

√
k, 3 for the next

√
k,

and so on, up to
√

k − 1. Let pi be the length of the
shortest path during the i-th merge. Over all merges,
these lengths add up to

k−
√

k
∑

i=1

pi =

√
k−1
∑

i=1

(i
√

k) =
√

k

√
k−1
∑

i=1

i =
k
√

k − k

2
= Θ(n

√
n).

A simple potential function argument (counting the
number of unrelated vertices) shows that this is actually
the worst case of the algorithm. For any sequence of n
merges in an n-node forest,

∑n
i=1 pi < n

√
n.

A.2 Maintaining sizes. This section explains how
to update the s(·) (size) and d(·) (dashed size) fields
during the merge operation when the tree is partitioned
by rank. There are three basic operations we must
handle: removal of the topmost node of a solid path;
insertion of an isolated node (a node with no adjacent
solid arcs) into a solid path; and replacement of the
(dashed) parent of q (moving the subtree rooted at q
down the tree). We consider each case in turn.

Consider removals first. Let x be a node removed
from a solid path and let c be its solid child. Node c
will become the top of a solid path, so we keep its size

explicitly: s′(c) ← s(x) − d(x). Also, because all arcs
entering x become dashed, we must update its dashed
size: d′(x) ← s(x). All other fields (including s(x) and
d(c)) remain unchanged.

Now consider the insertion of a node x into a solid
path S. Whenever this happens, the parent of x does
not change (it is always r). There are two cases to
consider. If x = top(S), it will gain a solid child c,
the former top of the path; we set s′(x) ← s(c) + s(x)
and s′(c) becomes undefined (the values of d(x) and
d(c) remain unchanged). If x 6= top(S), we set d′(r) ←
d(r)− s(x) (both s(r) and d(x) remain unchanged, and
s(x) becomes undefined).

The third operation we must handle is moving q.
Let r0 be its original parent and r1 be the new one
(recall that r1 is always a descendent of r0). We must
update their dashed sizes: d′(r0) ← d(r0) − s(q) and
d′(r1)← d(r1) + s(q). Furthermore, if r0 and r1 belong
to different solid paths, we set s′(r1)← s(r1) + s(q) (r1

will be the topmost vertex of its path in this case).

A.3 Solid Paths as Heaps. In the special case
where we do not need to maintain parent pointers, we
can use the algorithm described in Section 4 and repre-
sent each solid path as a heap, with higher priority given
to elements of smaller label. To insert an element into
the path, we use the standard insert heap operation.
Note that it is not necessary to search for the appropri-
ate position within the path: the position will not be
completely defined until the element becomes the top-
most vertex of the path, when it can be retrieved with
the deletemin operation. If each heap operation can be
performed in f(n) time, the data structure will be able
to execute m operations in O((m + nf(n)) log n) time.
Thus we get an O(n log2 n+m log n)-time algorithm us-
ing ordinary heaps, and an O(n log n log log n+m log n)-
time algorithm using the fastest known RAM priority
queues [27].

We can also represent each solid path with a van
Emde Boas tree [29, 30]. They support insertions, dele-
tions and predecessor queries in O(log log n) amortized
time if the labels belong to a small universe (polynomial
in n). Arbitrary labels can be mapped to a small uni-
verse with the Dietz-Sleator data structure [10] (and a
balanced search tree) or, if they are known offline, with
a simple preprocessing step. We must also use hash-
ing [18] to ensure that the total space taken by all trees
(one for each solid path) is O(n). With these measures,
we can solve the mergeable trees problem (including par-
ent queries) in O(n log n log log n + m log n) total time.

