Dynamic Trees

- · Goal: maintain a forest of rooted trees with costs on vertices.
 - Each tree has a root, every edge directed towards the root.
- · Operations allowed:
 - link(*v*,*w*): creates an edge between *v* (a root) and *w*.
 - $\operatorname{cut}(v,w)$: deletes edge (v,w).
 - findcost(v): returns the cost of vertex v.
 - findroot(v): returns the root of the tree containing v.
 - findmin(v): returns the vertex w of minimum cost on the path from v to the root (if there is a tie, choose the closest to the root).
 - addcost(*v*,*x*): adds *x* to the cost every vertex from *v* to root.

Dynamic Trees

Obvious Implementation

- A node represents each vertex;
- Each node *x* points to its parent *p*(*x*):
 - cut, split, findcost: constant time.
 - findroot, findmin, addcost: linear time on the size of the path.
- Acceptable if paths are small, but O(*n*) in the worst case.
- Cleverer data structures achieve O(log *n*) for all operations.

Dynamic Trees

Simple Paths

- · We start with a simpler problem:
 - Maintain set of paths subject to:
 - split: cuts a path in two;
 - concatenate: links endpoints of two paths, creating a new path.
 - Operations allowed:
 - findcost(v): returns the cost of vertex v;
 - addcost(v,x): adds x to the cost of vertices in path containing v;
 - + find min(v): returns minimum-cost vertex path containing v.

Splaying

- Simpler alternative to balanced binary trees: splaying.
 - Does not guarantee that trees are balanced in the worst case.
 - Guarantees O(log *n*) access in the amortized sense.
 - Makes the data structure much simpler to implement.
- Basic characteristics:
 - Does not require any balancing information;
 - On an access to *v*, splay on *v*:
 - Moves v to the root;
 - Roughly halves the depth of other nodes in the access path.
 - Based entirely on rotations.
- Other operations (insert, delete, join, split) use splay.

Amortized Analysis

- · Bounds the running time of a sequence of operations.
- Potential function Φ maps each configuration to real number.
- · Amortized time to execute each operation:
 - $a_i = t_i + \Phi_i \Phi_{i-1}$
 - a_i : amortized time to execute *i*-th operation;
 - *t_i*: actual time to execute the operation;
 - Φ_i : potential after the *i*-th operation.

- Total time for m operations:

 $\Sigma_{i=1..m} t_i = \Sigma_{i=1..m} (a_i + \Phi_{i-1} - \Phi_i) = \Phi_0 - \Phi_m + \Sigma_{i=1..m} a_i$

Dynamic Trees

Amortized Analysis of Splaying

• Definitions:

- s(x): size of node x (number of descendants, including x);
 At most n, by definition.
- *r*(*x*): rank of node *x*, defined as log *s*(*x*);
 At most log *n*, by definition.
- Φ_i: potential of the data structure (twice the sum of all ranks).
 At most O(n log n), by definition.
- Access Lemma [ST85]: The amortized time to splay a tree with root t at a node x is at most

 $6(r(t) - r(x)) + 1 = O(\log(s(t)/s(x))).$

Dynamic Trees

Proof of Access Lemma	
•	Access Lemma [ST85]: <i>The amortized time to splay a tree</i> with root t at a node x is at most
	$6(r(t)-r(x)) + 1 = O(\log(s(t)/s(x))).$
•	Proof idea:
	 r_i(x) = rank of x after the <i>i</i>-th splay step;
	 <i>a_i</i> = amortized cost of the <i>i</i>-th splay step;
	• $a_i \le 6(r_i(x) - r_{i-1}(x)) + 1$ (for the zig step, if any)
	• $a_i \le 6(r_i(x) - r_{i-1}(x))$ (for any zig-zig and zig-zag steps)
	• Total amortized time for all <i>k</i> steps:
	$\begin{split} & \sum_{i=1.,k} a_i \leq \sum_{i=1.,k \sim 1} \left[6(r_i(x) - r_{i-1}(x)) \right] + \left[6(r_k(x) - r_{k-1}(x)) + 1 \right] \\ & = 6r_k(x) - 6r_0(x) + 1 \end{split}$

Splaying

- To sum up:
 - No rotation: a = 1
 - Zig: $a \le 6 (r'(x) r(x)) + 1$
 - Zig-zig: $a \le 6 (r'(x) r(x))$
 - Zig-zag: $a \le 4 (r'(x) r(x))$
 - Total amortized time at most 6 $(r(t) r(x)) + 1 = O(\log n)$
- Since accesses bring the relevant element to the root, other operations (insert, delete, join, split) become trivial.

Dynamic Trees

- We know how to deal with isolated paths.
- How to deal with paths within a tree?

Dynamic Trees

· Solid paths:

- Represented as binary trees (as seen before).
- Parent pointer of root is the outgoing dashed edge.
- Hierarchy of solid binary trees linked by dashed edges: "virtual tree".
- "Isolated path" operations handle the exposed path.
 - The solid path entering the root.
 - Dashed pointers go up, so the solid path does not "know" it has dashed children.
- If a different path is needed:
 - expose(*v*): make entire path from *v* to the root solid.

Exposing a Vertex

ynamic Trees

- expose(*x*): makes the path from *x* to the root solid. .
- Implemented in three steps:
 - 1. Splay within each solid tree in the path from *x* to root.
 - 2. Splice each dashed edge from *x* to the root.
 - splice makes a dashed become the left solid child;
 - If there is an original left solid child, it becomes dashed.
 - 3. Splay on *x*, which will become the root.

Exposing a Vertex: Running Time

- Running time of expose(*x*):
 - proportional to initial depth of x;
 - *x* is rotated all the way to the root;
 - we just need to count the number of rotations;
 - will actually find amortized number of rotations: O(log n).
 - proof uses the Access Lemma.
 - *s*(*x*), *r*(*x*) and potential are defined as before;
 - In particular, s(x) is the size of the whole subtree rooted at x. . Includes both solid and dashed edges.

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

- *k*: number of dashed edges from *x* to the root *t*.
- Amortized costs of each pass:
 - 1. Splay within each solid tree:
 - x_i : vertex splayed on the *i*-th solid tree.
 - amortized cost of *i*-th splay: 6 $(r'(x_i) r(x_i)) + 1$.
 - $r(x_{i+1}) \ge r'(x_i)$, so the sum over all steps telescopes; Amortized cost first of pass: $6(r'(x_k)-r(x_1)) + k \le 6 \log n + k$.
 - 2. Splice dashed edges:

 - no rotations, no potential changes: amortized cost is zero.
 - 3. Splay on x:
 - amortized cost is at most $6 \log n + 1$. x ends up in root, so exactly k rotations happen;
 - each rotation costs one credit, but is charged two;
 - they pay for the extra k rotations in the first pass.
- Amortized number of rotations = $O(\log n)$.

Dynamic Trees

Implementing Dynamic Tree Operations

- findcost(v):
 - expose v, return cost(v).
- findroot(v):
 - expose v;
 - find *w*, the rightmost vertex in the solid subtree containing *v*;
 - splay at *w* and return *w*.
- findmin(v):
 - expose v;
 - use $\triangle cost$ and $\triangle min$ to walk down from v to w, the last minimumcost node in the solid subtree;
 - splay at w and return w.

Implementing Dynamic Tree Operations

- addcost(v, x):
 - expose v;
 - add x to $\triangle cost(v)$;
- link(*v*,*w*):
 - expose v and w (they are in different trees);
 - set p(v)=w (that is, make v a middle child of w).
- cut(*v*):
 - expose v;
 - add $\triangle cost(v)$ to $\triangle cost(right(v))$;
 - make p(right(v))=null and right(v)=null.

Dynamic Trees

Extensions and Variants

• Simple extensions:

- Associate values with edges:
 - just interpret cost(v) as cost(v,p(v)).
- other path queries (such as length):
 change values stored in each node and update operations.
- free (unrooted) trees.implement evert operation, which changes the root.
- · Not-so-simple extension:
 - subtree-related operations:
 - requires that vertices have bounded degree;
 - Approach for arbitrary trees: "ternarize" them: – [Goldberg, Grigoriadis and Tarjan, 1991]

Dynamic Trees

Alternative Implementation

- Total time per operation depends on the data structure used to represent paths:
 - Splay trees: O(log n) amortized [ST85].
 - Balanced search tree: $O(\log^2 n)$ amortized [ST83].
 - Locally biased search tree: O(log n) amortized [ST83].
 - Globally biased search trees: O(log n) worst-case [ST83].
- Biased search trees:
 - Support leaves with different "weights".
 - Some solid leaves are "heavier" because they also represent subtrees dangling from it from dashed edges.
 - Much more complicated than splay trees.