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Dynamic Trees

Dynamic Trees

• Goal: maintain a forest of rooted trees with costs on vertices. 

Each tree has a root, every edge directed towards the root.

• Operations allowed:

link(v,w): creates an edge between v (a root) and w.

cut(v,w): deletes edge (v,w).

findcost(v): returns the cost of vertex v.

findroot(v): returns the root of the tree containing v.

findmin(v): returns the vertex w of minimum cost on the path 
from v to the root (if there is a tie, choose the closest to the root).

addcost(v,x): adds x to the cost every vertex from v to root.

Dynamic Trees

Dynamic Trees

• An example (two trees):
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Dynamic Trees

Dynamic Trees

findmin(s) = b

findroot(s) = a

findcost(s) = 2

addcost(s,3)
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Dynamic Trees

Obvious Implementation

• A node represents each vertex;

• Each node x points to its parent p(x):

cut, split, findcost: constant time.

findroot, findmin, addcost: linear time on the size of the path.

• Acceptable if paths are small, but O(n) in the worst case.

• Cleverer data structures achieve O(log n) for all operations.
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Dynamic Trees

Simple Paths

• We start with a simpler problem:

Maintain set of paths subject to:

• split: cuts a path in two;

• concatenate: links endpoints of two paths, creating a new path.

Operations allowed:

• findcost(v): returns the cost of vertex v;

• addcost(v,x): adds x to the cost of vertices in path containing v;

• findmin(v): returns minimum-cost vertex path containing v.

v1 v5v4v3v2 v6 v7

Dynamic Trees

Simple Paths as Lists

• Natural representation: doubly linked list.

Constant time for findcost.

Constant time for concatenate and split if endpoints given, linear 
time otherwise.

Linear time for findmin and addcost.

• Can we do it O(log n) time?

v1 v5v4v3v2 v6 v7

6 7432 9 3costs:

Dynamic Trees

Simple Paths as Binary Trees

• Alternative representation: balanced binary trees.

Leaves: vertices in symmetric order.

Internal nodes: subpaths between extreme descendants.

v1 v5v4v3v2 v6 v7
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(v1,v3)

(v4,v6)

(v4,v7)

(v5,v6)

(v1,v7)

Dynamic Trees

Simple Paths as Binary Trees

• Compact alternative:

Each internal node represents both a vertex and a subpath:

• subpath from leftmost to rightmost descendant.
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Dynamic Trees

Simple Paths: Maintaining Costs

• Keeping costs:

First idea: store cost(x) directly on each vertex;

Problem: addcost takes linear time (must update all vertices).
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Dynamic Trees

Simple Paths: Maintaining Costs

• Better approach: store ∆cost(x) instead:

Root:               ∆cost(x) = cost(x)

Other nodes: ∆cost(x) = cost(x) – cost(p(x))
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Dynamic Trees

Simple Paths: Maintaining Costs

• Costs:

addcost: constant time (just add to root)

Finding cost(x) is slightly harder: O(depth(x)).
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Dynamic Trees

Simple Paths: Finding Minima

• Still have to implement findmin:

Store mincost(x), the minimum cost on subpath with root x.

• findmin runs in O(log n) time, but addcost is linear.
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Dynamic Trees

Simple Paths: Finding Minima

• Store ∆min(x) = cost(x)–mincost(x) instead.

findmin still runs in O(log n) time, addcost now constant.
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Dynamic Trees

Simple Paths: Data Fields

• Final version:

Stores ∆min(x) and ∆cost(x) for every vertex
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Dynamic Trees

Simple Paths: Structural Changes

• Concatenating and splitting paths:

Join or split the corresponding binary trees;

Time proportional to tree height.

For balanced trees, this is O(log n).

• Rotations must be supported in constant time.

• We must be able to update ∆min and ∆cost.

Dynamic Trees

Simple Paths: Structural Changes

• Restructuring primitive: rotation.

• Fields are updated as follows (for left and right rotations):

∆cost’(v) = ∆cost(v) + ∆cost(w)

∆cost’(w) = –∆cost(v)

∆cost’(b) = ∆cost(v) + ∆cost(b)

∆min’(w) = max{0, ∆min(b) – ∆cost’(b), ∆min(c) – ∆cost(c)}

∆min’(v) = max{0, ∆min(a) – ∆cost(a), ∆min’(w) – ∆cost’(w)}
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Dynamic Trees

Splaying

• Simpler alternative to balanced binary trees: splaying.

Does not guarantee that trees are balanced in the worst case.

Guarantees O(log n) access in the amortized sense.

Makes the data structure much simpler to implement.

• Basic characteristics:

Does not require any balancing information;

On an access to v, splay on v:

• Moves v to the root;

• Roughly halves the depth of other nodes in the access path.

Based entirely on rotations.

• Other operations (insert, delete, join, split) use splay.

Dynamic Trees

Splaying

• Three restructuring operations:
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Dynamic Trees

An Example of Splaying
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An Example of Splaying
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An Example of Splaying
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An Example of Splaying
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Dynamic Trees

An Example of Splaying
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An Example of Splaying
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An Example of Splaying
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An Example of Splaying
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An Example of Splaying
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Dynamic Trees

An Example of Splaying

• End result:
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Dynamic Trees

Amortized Analysis

• Bounds the running time of a sequence of operations.

• Potential function Φ maps each configuration to real number.

• Amortized time to execute each operation:

ai = ti + Φi – Φi –1

• ai: amortized time to execute i-th operation;

• ti: actual time to execute the operation;

• Φi: potential after the i-th operation.

• Total time for m operations:

Σi=1..m ti = Σi=1..m(ai + Φi –1– Φi) = Φ0 – Φm + Σi=1..m ai

Dynamic Trees

Amortized Analysis of Splaying

• Definitions:

s(x): size of node x (number of descendants, including x);

• At most n, by definition.

r(x): rank of node x, defined as log s(x);

• At most log n, by definition.

Φi: potential of the data structure (twice the sum of all ranks).

• At most O(n log n), by definition.

• Access Lemma [ST85]: The amortized time to splay a tree 
with root t at a node x is at most

6(r(t)–r(x)) + 1 = O(log(s(t)/s(x))).

Dynamic Trees

Proof of Access Lemma

• Access Lemma [ST85]: The amortized time to splay a tree 
with root t at a node x is at most

6(r(t)–r(x)) + 1 = O(log(s(t)/s(x))).

• Proof idea:

ri(x) = rank of x after the i-th splay step;

ai = amortized cost of the i-th splay step;

ai ≤ 6(ri(x)–ri–1(x)) + 1 (for the zig step, if any)

ai ≤ 6(ri(x)–ri–1(x)) (for any zig-zig and zig-zag steps)

Total amortized time for all k steps:

Σi=1..k ai ≤ Σi=1..k-1 [6(ri(x)–ri–1(x))] + [6(rk(x)–rk–1(x)) + 1]

= 6rk(x) – 6r0(x) + 1

Dynamic Trees

Proof of Access Lemma: Splaying Step

• Zig-zig:

Claim: a ≤ 6 (r’(x) – r(x))

t + Φ’ – Φ ≤ 6 (r’(x) – r(x))

2 + 2(r’(x )+r’(y)+r’(z )) – 2(r(x )+r(y)+r(z )) ≤ 6 (r’(x) – r(x))

1 + r’(x ) + r’(y) + r’(z ) – r(x ) – r(y) – r(z ) ≤ 3 (r’(x) – r(x)) 

1 + r’(y) + r’(z ) – r(x) – r(y) ≤ 3 (r’(x) – r(x)) since r’(x) = r(z)

1 + r’(y) + r’(z ) – 2r(x) ≤ 3 (r’(x) – r(x))                 since r(y) ≥ r(x)

1 + r’(x) + r’(z ) – 2r(x) ≤ 3 (r’(x) – r(x)) since r’(x) ≥ r’(y)

(r(x ) – r’(x)) + (r’(z) – r’(x)) ≤ – 1                           rearranging

log(s(x)/s’(x)) + log(s’(z)/s’(x)) ≤ – 1                       definition of rank

TRUE because s(x)+s’(z)<s’(x): both ratios are smaller than 1, at least one 
is at most 1/2.
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Dynamic Trees

Proof of Access Lemma: Splaying Step

• Zig-zag:

Claim: a ≤ 4 (r’(x) – r(x))

t + Φ’ – Φ ≤ 4 (r’(x) – r(x))

2 + (2r’(x )+2r’(y)+2r’(z )) – (2r(x )+2r(y)+2r(z )) ≤ 4 (r’(x) – r(x))

2 + 2r’(y) + 2r’(z ) – 2r(x) – 2r(y) ≤ 4 (r’(x) – r(x)), since r’(x) = r(z)

2 + 2r’(y) + 2r’(z ) – 4r(x) ≤ 4 (r’(x) – r(x)), since r(y) ≥ r(x)

(r’(y) – r’(x)) + (r’(z) –r’(x)) ≤ –1,                                  rearranging

log(s’(y)/s’(x)) + log(s’(z)/s’(x)) ≤ –1                             definition of rank

TRUE because s’(y)+s’(z)<s’(x): both ratios are smaller than 1, at least one 
is at most 1/2.
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Dynamic Trees

Proof of Access Lemma: Splaying Step

• Zig:

Claim: a ≤ 1 + 6 (r’(x) – r(x))

t + Φ’ – Φ ≤ 1 + 6 (r’(x) – r(x))

1 + (2r’(x )+2r’(y)) – (2r(x )+2r(y)) ≤ 1 + 6 (r’(x) – r(x))

1 + 2 (r’(x) – r(x)) ≤ 1 + 6 (r’(x) – r(x)), since r(y) ≥ r’(y)

TRUE because r’(x) ≥ r(x).
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Dynamic Trees

Splaying

• To sum up:

No rotation: a = 1

Zig: a ≤ 6 (r’(x) – r(x)) + 1

Zig-zig: a ≤ 6 (r’(x) – r(x))

Zig-zag: a ≤ 4 (r’(x) – r(x))

Total amortized time at most 6 (r(t) – r(x)) + 1 = O(log n) 

• Since accesses bring the relevant element to the root, other 
operations (insert, delete, join, split) become trivial.

Dynamic Trees

Dynamic Trees

• We know how to deal with isolated paths.

• How to deal with paths within a tree?

Dynamic Trees

Dynamic Trees

• Main idea: partition the vertices in a tree into disjoint solid 
paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

• Main idea: partition the vertices in a tree into disjoint solid 
paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

• A vertex v is exposed if:

There is a solid path from v to the root;

No solid edge enters v.

Dynamic Trees

Dynamic Trees

• A vertex v is exposed if:

There is a solid path from v to the root;

No solid edge enters v.

• It is unique.

v
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Dynamic Trees

Dynamic Trees

• Solid paths:

Represented as binary trees (as seen before). 

Parent pointer of root is the outgoing dashed edge.

Hierarchy of solid binary trees linked by dashed edges:  “virtual 
tree”.

• “Isolated path” operations handle the exposed path.

The solid path entering the root.

Dashed pointers go up, so the solid path does not “know” it has 
dashed children.

• If a different path is needed:

expose(v): make entire path from v to the root solid.

Dynamic Trees

Virtual Tree: An Example
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Dynamic Trees

Dynamic Trees

• Example: expose(v)

v

Dynamic Trees

Dynamic Trees

• Example: expose(v)

Take all edges in the path to the root, …

v

Dynamic Trees

Dynamic Trees

• Example: expose(v)

…, make them solid, …

v

Dynamic Trees

Dynamic Trees

• Example: expose(v)

…make sure there is no other solid edge incident into the path.

• Uses splice operation.

v
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Dynamic Trees

Exposing a Vertex

• expose(x): makes the path from x to the root solid.

• Implemented in three steps:

1. Splay within each solid tree in the path from x to root.

2. Splice each dashed edge from x to the root. 

– splice makes a dashed become the left solid child;

– If there is an original left solid child, it becomes dashed.

3. Splay on x, which will become the root.

Dynamic Trees

• expose(a)

Exposing a Vertex: An Example
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Dynamic Trees

• Additional restructuring primitive: splice.

Will only occur when z is the root of a tree.

• Updates:

∆cost’(v) = ∆cost(v) – ∆cost(z)

∆cost’(u) = ∆cost(u) + ∆cost(z)

∆min’(z) = max{0, ∆min(v) – ∆cost’(v), ∆min(x) – ∆cost(x)}

Dynamic Trees: Splice

u xv

splice(v)

w

z

v xu w

z

Dynamic Trees

Exposing a Vertex: Running Time

• Running time of expose(x): 

proportional to initial depth of x;

x is rotated all the way to the root;

we just need to count the number of rotations;

• will actually find amortized number of rotations: O(log n).

proof uses the Access Lemma.

• s(x), r(x) and potential are defined as before;

• In particular, s(x) is the size of the whole subtree rooted at x. 
– Includes both solid and dashed edges.

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

k: number of dashed edges from x to the root t.

Amortized costs of each pass:

1. Splay within each solid tree:
– xi: vertex splayed on the i-th solid tree.
– amortized cost of i-th splay: 6 (r’(xi) – r(xi)) + 1.
– r(xi+1) ≥ r’(xi), so the sum over all steps telescopes;
– Amortized cost first of pass: 6(r’(xk)–r(x1)) + k ≤ 6 log n + k.

2. Splice dashed edges: 
– no rotations, no potential changes: amortized cost is zero.

3. Splay on x: 
– amortized cost is at most 6 log n + 1.
– x ends up in root, so exactly k rotations happen; 
– each rotation costs one credit, but is charged two;
– they pay for the extra k rotations in the first pass.

Amortized number of rotations = O(log n).

Dynamic Trees

Implementing Dynamic Tree Operations

• findcost(v): 

expose v, return cost(v).

• findroot(v): 

expose v;

find w, the rightmost vertex in the solid subtree containing v;

splay at w and return w.

• findmin(v): 

expose v;

use ∆cost and ∆min to walk down from v to w, the last minimum-
cost node in the solid subtree;

splay at w and return w.
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Dynamic Trees

Implementing Dynamic Tree Operations

• addcost(v, x): 

expose v;

add x to ∆cost(v);

• link(v,w):

expose v and w (they are in different trees);

set p(v)=w (that is, make v a middle child of w).

• cut(v): 

expose v;

add ∆cost(v) to ∆cost(right(v));

make p(right(v))=null and right(v)=null.

Dynamic Trees

Extensions and Variants

• Simple extensions:

Associate values with edges:

• just interpret cost(v) as cost(v,p(v)).

other path queries (such as length):

• change values stored in each node and update operations.

free (unrooted) trees.

• implement evert operation, which changes the root.

• Not-so-simple extension:

subtree-related operations:

• requires that vertices have bounded degree;

• Approach for arbitrary trees: “ternarize” them:
– [Goldberg, Grigoriadis and Tarjan, 1991]

Dynamic Trees

Alternative Implementation

• Total time per operation depends on the data structure used to 
represent paths:

Splay trees: O(log n) amortized [ST85].

Balanced search tree: O(log2n) amortized [ST83].

Locally biased search tree: O(log n) amortized [ST83].

Globally biased search trees: O(log n) worst-case [ST83].

• Biased search trees:

Support leaves with different “weights”.

Some solid leaves are “heavier” because they also represent
subtrees dangling from it from dashed edges.

Much more complicated than splay trees.


