
A Minimum Spanning Tree Algorithm with Inverse-
Ackermann Type Complexity

BERNARD CHAZELLE

Princeton University, Princeton, New Jersey, and NEC Research Institute

Abstract. A deterministic algorithm for computing a minimum spanning tree of a connected graph is
presented. Its running time is O(ma(m, n)), where a is the classical functional inverse of
Ackermann’s function and n (respectively, m) is the number of vertices (respectively, edges). The
algorithm is comparison-based: it uses pointers, not arrays, and it makes no numeric assumptions on
the edge costs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems.

General Terms: Theory

Additional Key Words and Phrases: Graphs, matroids, minimum spanning trees

1. Introduction

The history of the minimum spanning tree (MST) problem is long and rich, going
as far back as Borůvka’s work in 1926 [Borůvka 1926; Graham and Hell 1985;
Nešetřil 1997]. In fact, MST is perhaps the oldest open problem in computer
science. According to Nešetřil [1997], “this is a cornerstone problem of combina-
torial optimization and in a sense its cradle.” Textbook algorithms run in O(m
log n) time, where n and m denote, respectively, the number of vertices and
edges in the graph. Improvements to O(m log log n) were given independently
by Yao [1975] and by Cheriton and Tarjan [1976]. In the mid-eighties, Fredman
and Tarjan [1987] lowered the complexity to O(mb(m, n)), where b(m, n) is
the number of log-iterations necessary to map n to a number less than m/n. In
the worst case, m 5 O(n) and the running time is O(m log* m). Soon after, the

A preliminary version of this paper appeared as CHAZELLE, B. 1997. A faster deterministic algorithm
for minimum spanning trees. In Proceedings of the 38th Annual IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 22–31.
This work was supported in part by the National Science Foundation (NSF) Grants CCR 93-01254
and CCR 96-23768, ARO Grant DAAH04-96-1-0181, and NEC Research Institute.
Author’s address: Department of Computer Science, Princeton University, 35 Olden Street, Prince-
ton, NJ 083-44-2087, e-mail: chazelle@cs.princeton.edu and NEC Research Institute, e-mail:
chazelle@research.nj.nec.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0004-5411/00/1100-1028 $05.00

Journal of the ACM, Vol. 47, No. 6, November 2000, pp. 1028 –1047.

complexity was further reduced to O(m log b(m, n)) by Gabow et al. [1986].
Recently, Karger et al. [1995] have discovered a randomized algorithm with
linear expected complexity. If the edge costs are integers and the model allows
bucketing and bit manipulation, it is possible to solve the problem in linear time
deterministically, as was shown by Fredman and Willard [1993]. To achieve a
similar result in a comparison-based model has long been a high-priority
objective in the field of algorithms. The reason why is, first, the illustrious history
of the MST problem; second, the fact that it goes to the heart of matroid
optimization.

This paper does not resolve the MST problem, but it takes a significant step
towards a solution and charts out a new line of attack. Our main result is a
deterministic algorithm for computing the MST of a connected graph in time
O(ma(m, n)), where a is the functional inverse of Ackermann’s function
defined in Tarjan [1975]. The algorithm is comparison-based: it uses pointers,
not arrays, and it makes no numeric assumptions on the edge costs.

In addition to providing a new complexity bound, the larger contribution of
this paper is to introduce a nongreedy approach to matroid optimization, which
we hope will prove useful beyond minimum spanning trees. The key idea is to
compute suboptimal independent sets in a nongreedy fashion, and then progres-
sively improve upon them until an optimal basis is reached. Specifically, an
approximate priority queue, called a soft heap [Chazelle 2000], is used to
construct a good, but not necessarily minimum, spanning tree. The quality of the
tree is progressively refined until an MST is finally produced.

THEOREM 1.1. The MST of a connected graph with n vertices and m edges can
be computed in O(ma(m, n)).

How good is the ma(m, n) bound? Is it optimal? Doubtful. Is it natural?
Definitely. Given a spanning tree T, to verify that it is minimum can be done in
linear time [Dixon et al. 1992; King 1997; Komlós 1985] the problem is to check
that any edge outside T is the most expensive along the cycle it forms with T.
With real costs, this can be viewed as a problem of computing over the
semigroup (R, max) along paths of a tree. Interestingly, this problem requires
V(ma(m, n)) time over an arbitrary semigroup [Chazelle and Rosenberg 1991;
Tarjan 1978]. This lower bound suggests that in order to improve upon our
algorithm specific properties of (R, max) will have to be exploited. This is done
statically in Dixon et al. [1992], King [1997], and Komlós [1985]. We speculate
that an answer might come from a dynamic equivalent.

This paper is organized as follows. This section proceeds with a brief overview
of the algorithm (Section 1.1), a discussion of the key concept of edge corruption
(Section 1.2) and a review of soft heaps (Section 1.3). In Section 2, we introduce
the main structural invariants of the algorithm and we discuss its components in
detail. We prove its correctness in Section 3, and we analyze its complexity in
Section 4 and Section 5.

1.1. THE ALGORITHM AT A GLANCE. The input is a connected, undirected
graph G, with no self-loops, where each edge e is assigned a cost c(e). These
costs are assumed to be distinct elements from a totally ordered universe (a
nonrestrictive assumption, as ties can be broken arbitrarily). As is well known,
the MST of such a graph is unique. A subgraph C of G is contractible if its

1029A Minimum Spanning Tree Algorithm

intersection with MST (G) is connected. What makes this notion useful is that MST

(G) can be assembled directly from MST (C) and MST (G9), where G9 is the graph
derived from G by contracting C into a single vertex. Previous algorithms identify
contractible subgraphs on the fly as the explored portion of the MST grows. Our
first idea is to reverse this process, that is, to certify the contractibility of C before
computing its MST. The advantage should be obvious. Computing MST (C) is
bound to be easier if we already know that C is contractible, for then we need to
look only at edges with both endpoints in C. Otherwise, we must also visit edges
with one endpoint in C. This makes genuine divide-and-conquer possible. The
challenge is, how can we discover a contractible subgraph without computing its
MST at the same time? Current methods are not helpful, and that is why we turn
to soft heaps.

To compute MST (G), first we decompose G into vertex-disjoint contractible
subgraphs of suitable size. Next, we contract each subgraph into a single vertex to
form a minor1 of G, which we similarly decompose into vertex-disjoint contract-
ible subgraphs, etc. We iterate on this process until G becomes a single vertex.
This forms a hierarchy of contractible subgraphs, which we can model by a
perfectly balanced tree 7: its leaves are the vertices of G; an internal node z with
children { zi} is associated with a graph Cz whose vertices are the contractions of
the graphs {Czi

}. Each level of 7 represents a certain minor of G, and each Cz is
a contractible subgraph of the minor associated with the level of its children. In
this association, the leaf level corresponds to G while the root corresponds to the
whole graph G contracted into a single vertex. Once 7 is available, we compute
the MST of each Cz recursively. Because the Cz’s are contractible, gluing together
the trees MST (Cz) produces MST (G).

We have considerable freedom in choosing the height d of 7 and the number
nz of vertices of each Cz (which, as we should note, is also the number of
children of z). The tree 7 is then computed in O(m 1 d3n) time. If d is chosen
large then the nz’s can be kept small; the recursive computation within each Cz is
very fast but building 7 is slow. Conversely, a small height speeds up the
construction of 7 but, by making the Cz’s bigger, it makes the recursion more
expensive. This is where Ackermann’s function comes into play by providing the
best possible trade-off. Let dz denote the height of z in 7, which is defined as the
maximum number of edges from z to a leaf below. A judicious choice is nz 5
S(t, 1)3 5 8 if dz 5 1, and nz 5 S(t 2 1, S(t, dz 2 1))3 if dz . 1, where t .
0 is minimum such that n # S(t, d)3, with d 5 c(m/n)1/3, for a large enough
constant c, and

5S~1, j! 5 2j, for any j . 0;
S~i, 1! 5 2, for any i . 0;
S~i, j! 5 S~i, j 2 1!S~i 2 1, S~i, j 2 1!! , for any i, j . 1.

We easily prove by induction that the expansion of Cz relative to G (i.e., the
subgraph of G whose vertices end up in Cz) has precisely S(t, dz)

3 vertices. This
follows from the identity

S~t, dz 2 1!3nz 5 S~t, dz 2 1!3S~t 2 1, S~t, dz 2 1!!3 5 S~t, dz!
3 .

1 A minor is a graph derived from a sequence of edge contractions and their implied vertex deletions.

1030 BERNARD CHAZELLE

If we assume for simplicity that n is actually equal to S(t, d)3, the previous
statement is true for all z, including the root of 7. It follows immediately that d
coincides with the height of 7. Let us prove by induction on t that if the number
of vertices of G satisfies n 5 S(t, d)3, then MST (G) can be computed in bt(m 1
d3n) time, where b is a large enough constant. For the sake of this overview, we
omit the basis case t 5 1. To apply the induction hypothesis on the computation
cost of MST (Cz), we note that the number of vertices of Cz satisfies nz 5 S(t 2
1, S(t, dz 2 1))3, so by visual inspection we see that, in the formula above, t
must be replaced by t 2 1 and d by S(t, dz 2 1). This gives a cost of b(t 2
1)(mz 1 S(t, dz 2 1)3nz), where mz is the number of edges in Cz. Summing up
over all internal nodes z e 7 allows us to bound the computation costs of all the
MST (Cz)’s by

b~t 2 1!S m 1 O
z

S~t, dz 2 1!3S~t 2 1, S~t, dz 2 1!!3D
5 b~t 2 1!S m 1 O

z
S~t, dz!

3D ,

which is

b~t 2 1!~m 1 # vertices in expansion of Cz! 5 b~t 2 1!~m 1 dn! .

Adding to this the time claimed earlier for computing 7 yields, for b large
enough,

b~t 2 1!~m 1 dn! 1 O~m 1 d3n! # bt~m 1 d3n! ,

which proves our claim. As we show later, our choice of t and d implies that t 5
O(a(m, n)), and so the running time of the MST algorithm is O(ma(m, n)).

This informal discussion leads to the heart of the matter: how to build 7 in
O(m 1 d3n) time. We have swept under the rug a number of peripheral
difficulties, which in the end results in an algorithm significantly more sophisti-
cated than the one we have outlined. Indeed, quite a few things can go wrong
along the way; none as serious as edge corruption, an unavoidable byproduct of
soft heaps, which we discuss next.

1.2. EDGE CORRUPTION. In the course of computing 7, certain edges of G
become corrupted, meaning that their costs are raised. To make matters even
worse, the cost of a corrupted edge can be raised more than once. The reason for
all this has to do with the soft heap, the approximate priority queue which we use
for identifying contractible subgraphs (more on this later). Some corrupted edges
cause trouble, while others do not. To understand this phenomenon— one of the
most intriguing aspects of the analysis—we must discuss how the overall con-
struction of 7 is scheduled.

It would be tempting to build 7 bottom-up level by level, but this would be a
mistake. Indeed, it is imperative to maintain a connected structure. So, instead,
we compute 7 in postorder: children first, parent last. Let z be the current node
visited in 7, and let z1, . . . , zk 5 z be the active path, that is, the path from the
root z1. The subgraphs Cz1

, . . . , Czk
are being currently assembled, and as soon

1031A Minimum Spanning Tree Algorithm

as Czk
is ready it is contracted into one vertex, which is then added to Czk21

. A
minor technical note: if zi11 is the leftmost child of zi, that is, the first child
visited chronologically, then Czi

does not yet have any vertex, and so it makes
sense to omit zi from the active path altogether. The benefit of such shortcuts is
that by avoiding one-child parents, we ensure that each of Cz1

, . . . , Czk
now has

at least one vertex, which itself is a vertex of G or a contraction of a connected
subgraph.

As long as an edge of G has exactly one vertex in Cz1
ø . . . ø Czk

, it is said to
be of the border type. Of course, the type of an edge changes over time:
successively, unvisited, border, [Cz along active path, contracted. Corruption
can strike edges only when they are of the border type (since it is then that they
are in soft heaps). At first, corruption might seem fatal: if all edges become
corrupted, aren’t we solving an MST problem with entirely wrong edge costs? But
in fact, rather miraculously, corruption causes harm only in one specific situa-
tion: we say that an edge becomes bad if it is a corrupted border edge at the time
its incident Cz is contracted into one vertex. Once bad always bad, but like any
corrupted edge its cost can still rise. Remarkably, it can be shown that if no edges
ever turned bad, the algorithm would behave as though no corruption ever
occurred, regardless of how much actually took place. Our goal, thus, is to fight
badness rather than corruption. We are able to limit the number of bad edges to
within m/ 2 1 d3n. The number of edges corrupted but never bad is irrelevant.

Once 7 is built, we restore all the edge costs to their original values, and we
remove all the bad edges. We recurse within what is left of the Cz’s to produce a
spanning forest F. Finally, we throw back in the bad edges and recurse again to
produce the minimum spanning tree of G. There are subtleties in these various
recursions, which we explain in the next section. We close this overview with a
quick sketch of the soft heap.

1.3. THE SOFT HEAP. A simple priority queue, called a soft heap, is the main
vehicle for selecting good candidate edges. The data structure stores items with
keys from a totally ordered universe, and supports the operations:

—create (6). Create an empty soft heap 6.
—insert (6, x). Add new item x to 6.
—meld (6, 69). Form a new soft heap with the items stored in 6 and 69

(assumed to be disjoint), and destroy 6 and 69.
—delete (6, x). Remove item x from 6.
—findmin (6). Return an item in 6 with the smallest key.

A soft heap may, at any time, increase the value of certain keys. Such keys, and
by extension, the corresponding items, are called corrupted. Naturally, findmin
returns the item of minimum current (not original) key. A parameter « controls
the amount of corruption. The soft heap is introduced in the companion paper
[Chazelle 2000]. We summarize its main features below.

THEOREM 1.2. [CHAZELLE 2000]. Beginning with no prior data, consider a
mixed sequence of operations that includes n inserts. For any 0 , « # 1/2, a soft
heap with error rate « supports each operation in constant amortized time, except for
insert, which takes O(log1/«) time. The data structure never contains more than «n
corrupted items at any given time.

1032 BERNARD CHAZELLE

2. The MST Algorithm

We begin with a review of a well-known procedure known as a Borůvka phase.
Pick a vertex and contract the cheapest edge incident to it. As is well known, this
transforms G into a graph with the same set of non-MST edges. We clean up the
graph, if necessary, by removing the self-loops that might have been created in
the process. (Recall that the graph may have multiple edges, to begin with.) We
can generalize this process by selecting the cheapest edge incident to each vertex
in G, and contracting each connected component in the subgraph of selected
edges. Again, we clean up afterwards. This is called a Borůvka phase; it is easily
performed in O(m) time in one pass through the graph. The number of vertices
drops by at least a factor of two. This simple procedure is useful for reducing the
number of vertices and it plays an important role in our MST algorithm.

To compute the MST of a connected graph G with n vertices and m edges, we
call the function msf (G, t) for the parameter value

t 5 min$i . 0 un # S~i, d!3% , (1)

where d 5 c(m/n)1/3. Throughout this paper, c denotes a large enough
integral constant. The function msf takes as input an integer t $ 1 and a graph
with distinct edge costs, and returns its minimum spanning forest (MSF). As this
suggests, we no longer assume that the input graph should be connected. As will
soon be clear, dropping the connectivity assumption is mandated by the recursion
invariants. The choice of t is arbitrary and affects only the running time. The
particular setting in (1) is the best possible, but because of the recursive nature
of the algorithm it is necessary to allow t to vary as a parameter.

msf (G , t)
[1] If t 5 1 or n 5 O(1), return MSF (G) by direct computation.
[2] Perform c consecutive Borůvka phases.
[3] Build 7 and form the graph B of bad edges.
[4] Set F 4 øz[7 msf (Cz \ B , t 2 1).
[5] Return msf (F ø B , t) ø {edges contracted in Step [2]}.

Step [1, 2]: Borůvka Phases. The case t 5 1 is special. We solve the problem
in O(n2) time by performing Borůvka phases until G is contracted to a single
vertex. If we are careful to remove multiple edges (by keeping only the cheapest
edge in each group) and to keep the graph free of multiple edges, we easily carry
out all phases in a total of O(n2 1 (n/ 2)2 1 . . .) 5 O(n2) time. If, on the
other hand, n 5 O(1), we compute the MST in O(m) time.

We apply the remainder of the algorithm to each connected component of G
separately. For the purpose of this explanation, therefore, we might as well
assume that G is connected. The aim of step [2] is simply to reduce the number
of vertices. The Borůvka phases transform G into a graph G0 with n0 # n/ 2c

vertices and m0 # m edges. This transformation requires O(n 1 m) time.

Step [3]: Building the Hierarchy 7. With t . 1 specified, so is the target size
nz of each Cz, that is, nz 5 S(t 2 1, S(t, dzk

2 1))3, where dzk
is the height of

z [7. We use the word “target” because the algorithm sometimes fails to meet
those intended sizes. This is no mere technicality but rather a deep structural
aspect of the algorithm, whose explanation is best postponed at this point.

1033A Minimum Spanning Tree Algorithm

To get things off the ground is routine, and so we discuss the algorithm in
mid-action. Let z1, . . . , zk 5 z denote the active path. As shown in Figure 1, the
subgraphs Cz1

, . . . , Czk
currently under construction are linked together in a

cost-decreasing chain of edges. The algorithm occasionally discards edges from
G0. (The word “discarded” has a technical meaning and refers to edges removed
from consideration in specific circumstances explained below.) Each graph Cz

includes all the nondiscarded edges of G0 whose endpoints map into it;
therefore, to specify a given Cz, it suffices to provide its vertices. The invariants
below hold at any time with respect to the current graph G0 (i.e., the original G0
minus all the edges previously discarded). We need the important concept of a
working cost: at any time, the working cost of an edge is its current cost if the
edge is bad, and its original cost otherwise. Thus, we distinguish among three
types of cost: original, current, and working.

INV1 For all i , k, we keep an edge (called a chain-link) joining Czi
to Czi11

whose current cost is (i) at most that of any border edge incident to Cz1

ø . . . ø Czi
and (ii) less than the working cost of any edge joining two distinct

Czj
’s (j # i). To enforce the latter condition efficiently, we maintain a

min-link, if it exists, for each pair i , j: this is an edge of minimum working
cost joining Czi

and Czj
.

INV2 For all j, the border edges (u, v) with u [Czj
are stored either in a soft

heap, denoted H(j), or in one, H(i, j), where 0 # i , j. No edge appears in
more than one heap. Besides the condition u [Czj

, membership in H(j)
implies that v is incident to at least one edge stored in some H(i, j);
membership in H(i, j) implies that v is also adjacent to Czi

but not to any Czl

in between (i , l , j). We extend this to i 5 0 to mean that v is incident to
no Czl

(l , j). All the soft heaps have error rate 1/c.

The main thrust of INV1 is to stipulate that the active path corresponds to a
descending chain of edges connecting various Cz’s. This descending property is
essential for ensuring contractibility. The chain-link between Czi

and Czi11
is the

edge that contributes Czi11
its first vertex. Subsequently, as Czi11

grows, lower-
cost edges might connect it to Czi

and so, in general, the chain-link is likely to be
distinct from the min-link between Czi

and Czi11
.

Why do we need so many heaps? The short answer is, to fight badness. The
problem is that when bad edges are deleted from a soft heap, Theorem 1.2 allows

FIG. 1. The chain of subgraphs along the active path, with edge costs indicated by vertical height.
Recall that working costs are current for bad edges and original for others.

1034 BERNARD CHAZELLE

the same amount of corruption to be produced anew. These newly corrupted
edges might then turn bad and be deleted. Cycling through this process could
have disastrous effects, perhaps even making every single edge bad. We use
separate heaps in order to create a buffering effect to counter this process. This
mechanism relies on structural properties of minimum spanning trees and a
subtle interplay among heaps.

The tree 7 is built in a postorder traversal driven by a stack whose two
operations, pop and push, translate into, respectively, a retraction and an
extension of the active path.

—RETRACTION. This happens for k $ 2 when the last subgraph Czk
has attained

its target size, ie, its number nzk
of vertices has reached the value of S(t 2 1,

S(t, dzk
2 1))3, where dzk

is the height of zk in 7. Recall that this target size
is also the number of children of zk in 7. In the particular case, dzk

5 1, the
target size is set to S(t, 1)3 5 8. The subgraph Czk

is contracted and becomes
a new vertex of Czk21

. That vertex is joined to Czk21
by the chain-link (plus

maybe other edges) between Czk21
and (now contracted) Czk

; these edges are
not contracted. As a net result, Czk21

gains one vertex and one or several new
edges, and the end of the active path is now zk21. A minor technicality:
because of the aforementioned shortcuts taken in forming the active path to
avoid zero-vertex Cz’s, we must add a new node between zk21 and zk in case
their heights differ by more than one. (The numbering of the Cz’s is implicit
and no updating is necessary; heights are understood here with respect to the
full—not partially constructed—tree 7.) Maintaining INV1 in O(k) time is
straightforward; INV2 is less so. Here is what we do:

The heaps H(k) and H(k 2 1, k) are destroyed. All corrupted edges are
discarded. (Note that these edges, if not bad already, become so now.) The
remaining items are partitioned into subsets, called clusters, of edges that share
the same endpoint outside the chain. For each cluster in turn, select the edge
(r, s) of minimum current cost and discard the others (if any). Next, insert the
selected edge into the heap implied by INV2. Specifically, if (r, s) comes from
H(k) and shares s with an edge in H(k 2 1, k), or if it comes from H(k 2 1,
k), then by INV2 it also shares s with an edge in some H(i, k 2 1) already, and
so it can be inserted into H(k 2 1). Otherwise, (r, s) comes from H(k) and
so, by INV2, it shares s with an edge in some H(i, k), with now i , k 2 1. The
edge (r, s) should be inserted into H(i, k). Finally, for each i , k 2 1, meld
H(i, k) into H(i, k 2 1).

Two remarks: (i) by inserting (r, s) into H(i, k), we force into the heap at
least a second edge pointing to s; (ii) since H(i, k) is melded into H(i, k 2 1),
we could have inserted (r, s) into H(k 2 1), instead of H(i, k), and still
maintain INV2. We choose not to because of the risk of seeing edges hopping
between H(,)’s at each retraction, which would be too costly.

—EXTENSION. Do findmin on all the heaps, and retrieve the border edge (u, v)
of minimum current cost c(u, v). This is called the extension edge. Of all the
min-links of working cost at most c(u, v), find the one (a, b) incident to the
Czi

of smallest index i. If such an edge indeed exists, we perform a fusion: we
contract the whole subchain Czi11

ø . . . ø Czk
into a (Figure 2). It is best to

think of this as a two-step process: first, contract all the edges with both
endpoints in Czi11

ø . . . ø Czk
. By abuse of notation, call b the resulting

1035A Minimum Spanning Tree Algorithm

vertex, and now contract the edge(s) joining a to b.
Next, we update all relevant min-links, which is easily done in O(k2) time. To
update heaps we generalize the retraction recipe in the obvious manner: We
extend the destruction of heaps to include not just H(k) and H(k 2 1, k) but
H(i 1 1), . . . , H(k), and all H(j, j9), i # j , j9. First, we discard all
corrupted edges from those heaps since they are now bad. Then, we regroup
the remaining edges into clusters and, for each one in turn, we reinsert the
edge (r, s) of minimum current cost and discard the others. As before, we
distinguish between two cases:

(1) If (r, s) comes from some H(j, j9) or H(j9), but in the latter case shares s
with an edge in H(j, j9), where i # j , j9, then by iterative application of
INV2 it also shares s with an edge (r9, s) in some H(h, l), with h , i # l.
As we explain below, the edge (r9, s) is to migrate into H(h, i) through
melding, if it is not there already, that is, if l . i, therefore by INV2 we can
insert (r, s) into H(i).

(2) Otherwise, (r, s) comes from H(j), where i , j, and it shares s with an
edge in some H(h, j), with now h , i. We insert the edge (r, s) into H(h,
j).

Finally, for each h, j with h , i , j, we meld H(h, j) into H(h, i). Observe
that by INV1(i) and the choice of the vertex a, it cannot be further down the
chain than u; hint: consider the chain-link leaving the chain from the same Cz

as (u, v). Therefore, whether u originally belonged to the last Cz in the chain,
it now does. Regardless of whether a fusion took place, we extend the chain by
making v into the single-vertex Czk

and the extension edge (u, v) into the
chain-link incident to it. The end of the active path is now zk. Note that this is
not the same zk as before: without fusion, the new value of k is the old one
plus one; with fusion, it is i 1 1.

Old border edges incident to v cease to be of the border type: delete them
from their respective heaps, and find among them the min-link between v and
each of Cz1

, . . . , Czk21
. Insert the new border edges incident to v into the

appropriate H(i, k); in case of multiple edges, keep only the cheapest in each
group and discard the others.

Having explained how retractions and extensions work, we review the construc-
tion of 7. At any given node zk of height at least 1, we perform extensions (and
their accompanying fusions) as long as we can (stack push), stopping only when
the size condition for retraction at that node has been met (stack pop). There is
no retraction condition for the root z1, and so the algorithm stops only when

FIG. 2. Extension: All three subgraphs right of Czi
collapse into b and then into a.

1036 BERNARD CHAZELLE

border edges run out and extensions are no longer possible. Assume that no
fusion ever takes place. From the identity

S~t, dz! 5 S~t, dz 2 1!S~t 2 1, S~t, dz 2 1!! ,

it immediately follows by induction that, for any internal z distinct from the root,
the expansion of Cz has exactly nzS(t, dz 2 1)3 vertices, which is S(t, dz)

3; recall
that the expansion of Cz consists of the vertices of G0 mapping into Cz, plus all
the edges of G0 joining pairs of them. Fusions muddy the waters by forcing
contractions before the target size has been reached and also by creating
arbitrarily large expansions. As we shall see, however, any Cz whose expansion
exceeds its allowed size is naturally broken down into subgraphs of the right size,
which then can be treated separately.

Remarks:

—A fusion is not a retraction into Czi
. Because the edge (a, b) is contracted, too,

and does not become an edge of Czi
, a fusion, unlike a retraction, does not

increase the number of vertices in Czi
. A fusion reflects the difficulty we may

have to “grow” to its proper size the subgraph Cz of the last node z of the
active path. The solution is to contract “just enough” to be able to resume the
extension from that (new) last node. For the algorithm designer, fusions are a
nuisance but for the running time, they are a blessing. In fact, one could
imagine the entire algorithm reduced to one giant fusion, and computing the
MST in linear time.

—The formation of clusters is a way of discarding edges once and for all.
Because no edge is ever discarded from H(0, j), the set of nondiscarded edges
always spans all of G0 and the algorithm never terminates prematurely with
vertices still unexplored. Recall that the graph G and, hence, G0 are assumed
connected for the purpose of this discussion, but in case they are not, we
simply repeat the construction of 7 for each connected component.

—The algorithm needs to keep track of the bad edges in order to form B in step
[3]. Badness occurs to the corrupted border edges incident to Czk

(in retrac-
tion) or Czi11

ø . . . ø Czk
(in fusion). All such edges are either explicitly

examined (and discarded) or they belong to heaps that are being melded: H(i,
k) into H(i, k 2 1) in a retraction or possibly several H(h, j) into the
corresponding H(h, i) in a fusion. A soft heap gives ready access to its
corrupted items, so we can mark the relevant edges bad. To make this cost
negligible, we ensure that edges are marked only once by, for example,
stringing all the non-bad corrupted edges together in a linked list.

—In step [3], the graph B takes its vertices from G0, but in the next step an edge
of B has its endpoints in Cz (and so, not necessarily, in G0). This minor
ambiguity simplifies the notation and is easily resolved from the context.

Step [4]: Recursing in Subgraphs of 7. Having built the tree 7, we consider
each node z: recall that Cz does not include any of the discarded edges. Let Cz \
B denote the subgraph of Cz obtained by removing all the bad edges. (Not all
bad edges may have been discarded; in fact, bad edges can be selected as
extension edges and thus play a direct role in building the Cz’s.) We apply the
algorithm recursively to Cz \ B after resetting all edge costs to their original
values, and decrementing the parameter t by one. The only effect of this

1037A Minimum Spanning Tree Algorithm

parameter change is to modify the target sizes for the new trees 7 to be built.
The output F is a set of edges joining vertices in Cz, but once again we maintain
this convenient ambiguity which allows us to treat them as edges of G0 in step
[5].

The correspondence between the vertices of Cz and the children of z should be
obvious, were it not for the presence of fusions. Consider the first fusion into
vertex a of Cz. Prior to it, vertex a corresponds to a child v of z, meaning that it
is the contraction of Cv. What happens after the fusion? As far as a is concerned
in step [4] the answer is: nothing. Vertex a still corresponds to the same Cv, and
step [4] recurses in Cv \ B. Next, we treat the part of 7 corresponding to the
subchain Czi11

ø . . . ø Czk
as a hierarchy of its own. Further fusions into a are

handled in the same way. In the end, vertex a is the contraction of not just Cv but
also of a number of subchains of the form Czi11

ø . . . ø Czk
equal to the number

of fusions.
Going back to a particular fusion of b into a, of all the edges currently joining

a and (contracted) b we retain in F the original min-link (a, b) if it is not bad,
else none of them. Note that retaining in F only one edge of the form (a, b) per
fusion is the same as solving the MSF problem, relative to original costs, for the
group of non-bad, non-discarded multiple edges joining a and b. The reason is
that if the min-link is not bad, then its working cost is also its original cost and it
is minimum in the group: consequently, the edge is the MST of that group. If the
min-link is bad, we do not need to include any edge of the group into F, since
bad edges are all reprocessed in step [5]. (As we show in the proof of correctness
below, we need not be concerned with non-bad discarded edges joining a and b:
they are dominated in original cost by other edges of the form (a, b) that are
themselves bad or not discarded, and hence, processed in this step or the next.)

Slightly anticipating the complexity discussion, we note that because each
subchain individually stays within its mandated size, their potential proliferation
does not increase the per-edge complexity of the algorithm. Fusions might
muddy the picture a little but, from a complexity viewpoint, in fact the more of
them the better. Think of the ultimate case, where the graph G0 is made of a
single path of edges with costs in increasing order, together with an arbitrary
number of other edges of much higher cost. Using a soft heap with zero error
rate (for illustrative purposes only), every extension gives rise to a fusion, and
every edge of the path is discovered as a fusion edge of the form (a, b). The tree
7 remains of height one and step [4] is trivial.

Step [5]: The Final Recursion. In step [3], we collected all the bad edges
created during the construction of 7 and we formed the graph B. We now add to
it the edges of F to assemble the subgraph F ø B of G0. Again, we emphasize
the fact that the vertices of this graph are original vertices of G0 and not the
contracted endpoints from which they might have emerged during the construc-
tion of 7. Applying the same sort of transfer, the output of msf (F ø B, t) is
now viewed as a set of edges with endpoints in G, not in G0. Adding the edges
contracted in step [2] produces the MST of G.

3. Correctness

We prove by induction on t and n that msf (G, t) computes the MSF of G. Since
the algorithm iterates through the connected components separately, we can

1038 BERNARD CHAZELLE

again assume that G is connected. Because of step [1] we can obviously assume
that t . 1 and n is larger than a suitable constant. Borůvka phases contract only
MST edges, therefore, by induction on the correctness of msf , the output of step
[5] is, indeed, MST (G), provided that any edge e of G0 outside F ø B is also
outside MST (G0). In other words, the proof of correctness of our MST algorithm
will be complete once we prove the following:

LEMMA 3.1. If an edge of G0 is not bad and lies outside F, then it lies outside
MST (G0).

In the lemma, all costs are understood as original. Of course, this innocent-
looking statement is the heart of the matter, since it pertains directly to the
hierarchy 7. To begin with, we must verify the two main invariants. Using heaps
to choose extension edges, and hence chain-links, ensures INV1 (i); similarly, we
resort to fusions simply to maintain INV1 (ii). Observe that if an extension edge is
corrupted but not bad, then it becomes a chain-link whose current cost exceeds
its working cost, so the distinction between working and current in INV1 is not
meaningless. Intuitively, (i) reflects the structure provided by the heaps, and (ii)
the structure needed for contractibility. Only border edges can be discarded, so
the discarding process itself cannot violate these invariants. As we discussed
earlier, INV2 is preserved through our updating of the heaps. We must now show
why maintaining these invariants produces contractible Cz’s.

Contractibility is defined in terms of MST, a global notion. Fortunately, we can
certify by local means that the subgraph C of G0 spanned by a subset of the
vertices is contractible. Indeed, it suffices to check that C is strongly contractible,
meaning that for every pair of edges e, f in G0, each with exactly one vertex in C,
there exists a path in C that connects e to f along which no edge exceeds the cost
of both e and f. This implies contractibility (but not the other way around). Why?
We argue by contradiction, assuming that C is not contractible. By definition,
C ù MST (G0) must have more than one connected component. Consider a
shortest path p in MST (G0) that joins two distinct components. The path has no
edge in C (else it could be shortened) and it has more than one edge (else it
would be in C), so its end-edges e and f are distinct and each has exactly one
endpoint in C. Any path in C joining e and f forms a cycle with p and by
elementary properties of MST, the most expensive cycle edge is outside MST (G0),
that is, outside of p, and hence in C. This contradicts the assumption and proves
the claim. The proof extends easily to accommodate nondistinct edge costs.

LEMMA 3.2 Consider the subgraph Cz at the time of its contraction. With respect
to working costs, Cz is strongly contractible and the same holds of every fusion edge
(a, b).

PROOF. The lemma refers to the edges present in Cz and in its neighborhood
at the time Cz is contracted: it does not include the edges of G0 that have been
discarded (in fact the lemma is false otherwise). The graph Cz is formed by
incrementally adding vertices via retractions. Occasionally, new neighboring
edges are added by fusion into some a [Cz. Because Cz does not contain
border edges, edge discarding never takes place within it, and so it grows
monotonically. (This does not mean, of course, that Cz includes all the edges of
the original G0 that join pairs of vertices in it.) Assume for now that no fusion
occurs. Each retraction has a unique chain-link (i.e., an extension edge) associ-

1039A Minimum Spanning Tree Algorithm

ated with it, and together they form a spanning tree of Cz. Thus, given any two
edges e, f, each with exactly one endpoint in Cz, the tree has a unique path p
joining (but not including) them. Let g 5 (u, v) be the edge of p of highest
current cost ever; break ties, if necessary, by choosing as g the last one selected
for extension chronologically. As usual, we make the convention that v is the
endpoint outside the chain at the time of extension. Along p, the vertex u lies
between v and one of the two edges, say, e (Figure 3). Throughout this proof the
term “working” is to be understood at the time right after Cz is contracted, while
“current” refers to the time when g is selected as a new chain-link (u, v) through
extension. We claim that the working cost of e is at least the current cost of g.
Since the working cost of no edge in p can ever exceed the current cost of g, the
lemma follows.

We prove the claim. If e currently joins Cz to some other Cz9, it follows from
INV1 (ii). Otherwise, let e9 be the first (current) border edge encountered along
the path from g to e. By INV1 (i), its current cost is at least that of g, and so by
our choice of g, we have e9 [y p, and hence, e9 5 e. Consequently, e currently is
and still will be a border edge when Cz is contracted. If it is in a corrupted state
then, it becomes bad after the contraction (were it not so already) and so, by
definition, its working cost is at least its current cost (it could be higher);
otherwise, both costs coincide with the original one. In both cases, the claim is
true.

To deal with a fusion into Cz, we should think of it as a two-step process: (i) a
sequence of retractions involving, successively, Czk

, Czk21
, . . . , Czi11

, where in
this notation Cz 5 Czi

, and (ii) the contraction of (a, b) into a. For the purpose
of this discussion, let us run the algorithm right until the time Cz is contracted,
while skipping step (ii) in all fusions into Cz. Then, as far as Cz is concerned its
evolution is indistinguishable from the no-fusion case discussed earlier, and the
same result applies. Executing all delayed applications of step (ii) now results in
contracting a number of edges already within Cz, which therefore keeps Cz

strongly contractible. This proves the first part of the lemma.
Now, going back to the normal sequencing of the algorithm, consider the

min-link (a, b) right before step (ii) in a fusion into Cz. By construction, no other
edge incident to (contracted) b is cheaper than (a, b) relative to working costs;
remember that all corrupted border edges incident to b become bad, and so
working and current costs agree. This shows that the edge (a, b) is strongly
contractible. e

PROOF OF LEMMA 3.1. The computation of 7 corresponds to a sequence of
contractions of minors, which transforms G0 into a single vertex. Denote these
minors by S1, S2, . . . in chronological order of their contractions. Note that
either Si is of the form Cz or it consists of the multiple edges of some fusion edge
(a, b).

Let G*0 be the graph G0 minus all the edges discarded during step [3]. As we
have observed (see Remarks in previous section), the discarding of edges does

FIG. 3. Proving contractibility.

1040 BERNARD CHAZELLE

not disconnect G0, so G*0 still spans all the vertices of G0. Lemma 3.2 applies to
Cz at the time of its contraction. The working costs of all edges within Cz are
frozen once and for all. Current costs of edges with one endpoint in Cz might
change, but working costs can never decrease, so the lemma still applies relative
to final working costs, ie, with each edge assigned its last working cost chrono-
logically. Unless specified otherwise, such costs are understood throughout the
remainder of our discussion.

Fix some Si. A vertex of Si is either a vertex of G0 or the contraction of some
Sj (j , i). In turn, the vertices of Sj are either vertices of G0 or contractions of
Sk (k , j), etc. By repeated applications of Lemma 3.2 (and again identifying
graphs with their edge sets) it follows that the MST of G*0 is the union of all the
MST (Si)’s: we call this the composition property. Keep in mind that the Si’s might
include bad edges and so the composition property does not necessarily hold for
the graphs of the form Cz \ B. In fact, it is worth noticing that, for all their
“badness,” bad edges are useful for making contractibility statements.

In proving Lemma 3.1, we begin with the case where the edge e under
consideration is never discarded, ie, belongs to G*0. Consider the unique Si that
contains both endpoints of e among its vertices. By induction on the correctness
of msf , the fact that e is not in F implies that it is not in MST (Si \ B). Since it is
not bad, the edge e is then outside MST (Si), and by the composition property,
outside MST (G*0). Recall that this holds relative to final working costs. Now,
switch all edge costs to their original values. If changes occur, they can only be
downward. The key observation now is that, by not being bad, the edge e
witnesses no change and so still remains the most expensive edge on a cycle of
G*0, with respect to original costs. This shows that e is not in MST (G*0), and
hence MST (G0), relative to original costs.

Assume now that e is not in G*0. Before being discarded, e 5 (u, v) shared a
common endpoint v with a cheaper edge e9 5 (u9, v). In the case of a retraction,
u and u9 coincide, while in a fusion, both are merged together through the
contraction of a subgraph. In both cases, u and u9 end up in a vertex which, by
repeated applications of Lemma 3.2, is easily seen to be the contraction of a
contractible subgraph of G*0 relative to working costs. By the discarding rule, e
and e9 are not corrupted and the former is more expensive than the latter. It
follows that e is outside MST (G0). Again, observe the usefulness of bad edges:
indeed, because e9 might become bad, we cannot conclude that e is outside MST

(G0 \ B). This completes the proof of Lemma 3.1. e

4. Bounding the Bad Edges

We bound the number of edges in the graph B, that is, the number of bad edges
created during the construction of 7 in step [3]. To prove the lemma below, we
begin with a bound on the total number of inserts. Recall that n0 (respectively,
m0) denotes the number of vertices (respectively, edges) of G0.

LEMMA 4.1. The total number of bad edges produced while building 7 is uBu #
m0/2 1 d3n0.

LEMMA 4.2. The total number of inserts in all the heaps is at most 4m0.

1041A Minimum Spanning Tree Algorithm

PROOF. Edges are inserted for the first time into a heap during an extension.
In fact, all extensions witness exactly m0 inserts. To bound the number of
reinserts, we provide each edge with three credits when it is first inserted. At a
currency rate of one credit per reinsert, we show that the credits injected cover
the reinserts.

We maintain the following invariant: For any j, any edge in H(j) has two
credits; for any i, j and any vertex s outside the chain, the k edges of H(i, j)
incident to s contain a total of k 1 2 credits (or, of course, 0 if k 5 0). With its
three brand-new credits the first insertion of edge (r, s), which takes place in
some H(i, k), easily conforms with the invariants.

Consider the case of a reinsert of (r, s) through retraction. If (r, s) comes from
H(k 2 1, k) or comes from H(k) but shares s with an edge in H(k 2 1, k),
then its cluster of edges pointing to s releases at least 3 credits, that is, k 1 2 1
(zero or more credits from H(k)), for k . 0: one pays for the insert into H(k 2
1), while the other two are enough to maintain the credit invariant for H(k 2
1). Otherwise, (r, s) comes from H(k) and has two credits at its disposal, as it is
inserted into some H(i, k), where i , k 2 1. After the insertion, the heap H(i,
k) will contain more than one edge pointing to s, and so only one credit is
needed for the heap as (r, s) moves into it. The remaining credit pays for the
insert.

What we just did is to revisit the retraction procedure step-by-step and follow
the movement of credits alongside. We can do exactly the same for a fusion.
Being so similar to a sequence of retractions, the fusion operation leads to an
almost identical discussion, which we may omit. e

Let B(i, j) be the bad edges in the heap H(i, j) at the time of its
disappearance (either via melding or actual destruction). To avoid double-
counting, we focus only on the edges of B(i, j) that were not already bad while in
B(i9, j9), for any (i9, j9) lexicographically greater than (i, j). Actually, we can
assume that i 5 i9, since for i9 . i all such edges are and thus denied a chance
to appear in B(i, j). We also have the bad edges from the heaps H(,). These are
easy to handle because unlike H(,,,) those heaps are never melded together: By
Theorem 1.2 and Lemma 4.2, the total number of corrupted edges in all the
H(,)’s at the time of their destruction is at most 4m0/c. Thus, the total number
uB u of bad edges satisfies: (by abuse of notation, i, j is a shorthand for all pairs
(node, descendant) in 7)

uB u # 4m0/c 1 O
i, j

uB~i, j!\ ø
j9.j

B~i, j9! u . (2)

Define the multiplicity of H(i, j) to be the maximum number of edges in it that
share the same endpoint (outside the chain). Melding H(i, j9) into H(i, j) does
not increase its multiplicity. (That is precisely the reason why we keep separate
heaps for each pair i, j). An insert into some H(i, j) during an extension sets the
multiplicity to one. During a retraction, an insert can increment the multiplicity
by at most one, but then the heap is immediately melded into H(i, j 2 1). It
follows that the multiplicity of any H(,, ,) is at most the height of 7, which is
itself at most d.

1042 BERNARD CHAZELLE

Any edge in H(i, l) that ends up in H(i, j) passes through all the intermediate
heaps H(i, l9) created (i , l9 , l). So, with the summation sign ranging over the
children j9 of node j in 7, we find that the summand in (2) is equal to

uB~i, j! u 2 O
j9

uB~i, j9! u 1 O
j9

bad edges deleted from H~i, j9!

during extensions . (3)

The last additive term comes from the fact that the only deletes from H(i, j9) are
caused by extensions. Indeed, deletes occur after findmins: all the edges sharing
the same endpoint with the edge selected by findmin are deleted. As we just
observed there are at most d of them in each B(i, j). There are at most (d11

2) #
d2 heaps H(,, ,) at any time, so the total number of edges deleted from B(i,
j9), for all i, j9, is at most d3n0. In view of (3), expanding (2) gives us a
telescoping sum resulting in

uB u # 4m0/c 1 d3n0 1 O
i ,i9

uB~i, i9! u ,

where i9 denotes any child of node i. The inserts that caused corruption within
the H(i, i9)’s are all distinct, and so again by Theorem 1.2 and Lemma 4.2, the
uB(i, i9) u’s sum up to at most 4m0/c. We conclude that uB u # 8m0/c 1 d3n0. (In
fact, we are overcounting.) With c large enough, Lemma 4.1 is now proven. e

5. Bounding the Running Time

We prove by induction on t and n that msf (G, t) takes time at most bt(m 1
d3(n 2 1)), where b is a constant large enough (but arbitrarily smaller than c),
and d is any integer large enough so that n # S(t, d)3. The basis case, t 5 1, is
easy. We have n # S(1, d)3 5 8d3 and the computation takes time O(n2) 5
O(d3n) # b(m 1 d3(n 2 1)). So we assume that t . 1 and, because of step [1],
that n is large enough.

We claim that d is an upper bound on the height of 7, and so we can apply the
results of the previous section with the same value of d. Indeed, suppose that no
fusion ever occurs. If n 5 S(t, d)3, then d is precisely the height of 7 for reasons
already explained (see paragraph preceding Remarks in Section 2). If n , S(t,
d)3, then obviously the construction terminates before the root of 7 attains its
target degree, and our claim holds. In the presence of fusions, the key fact is that
a fusion prunes a part of the existing 7 to create another one. Repeated fusions
create as many new trees, but each of them can be treated as a tree to which the
fusion-free case applies. Any one of them involves fewer than n vertices, so our
claim holds.

The Borůvka phases in step [2] transform G into a graph G0 with n0 # n/ 2c

vertices and m0 # m edges. This transformation requires O(n 1 m) time. The
complexity of building 7 in step [3] is dominated by the heap operations. By
Lemma 4.2, there are O(m0) inserts, and hence, O(m0) deletes and melds.
There are n0 2 1 edge extensions, each of them calling up to O(d2) findmins.
Each heap operation takes constant time so, conservatively, computing 7 takes

1043A Minimum Spanning Tree Algorithm

O(m0 1 d2n0) time plus the bookkeeping costs of accessing the right heaps at
the right time.

Bookkeeping is fairly straightforward, but two important points need to be
understood: one concerns the exclusive use of pointers, the other the identifica-
tion of the heaps H(i, j) for insertion. We do not use tables (arrays being
disallowed from the model), and as alluded to earlier, the notation H(i, j) is
merely shorthand for H(zi, zj). For each node zj, we maintain a linked list giving
access to H(j) and the H(i, j)’s, with the nodes zi appearing in order of
increasing height. The correspondence between the heap H(i, j) and the node zi

is enforced by pointers linking them. (Recall that these zi’s need not be
consecutive along the active path.)

For each v adjacent to the current chain, we maintain the border edges
incident to v in a linked list sorted in order of nondecreasing height along the
active path; this forms what we call the height list of v. In addition, for each z, we
maintain the border structure of z. This allows us to find, in O(1) time, the node
z whose Cz is incident upon a given border edge.

(1) If the number of border edges incident to Cz is less than d, then we keep a
pointer from each of them to z.

(2) Otherwise, we partition the border edges incident to Cz into groups of size d
(plus a remainder group of size , d). Each edge points to a group
representative, which itself points to z. (In other words, we create a tree of
height 2 with z at the root.)

The combination of height lists and border structures allows us to answer the
following question in constant amortized time: Given a border-edge (u, v)
incident to Cz, what is the next z9 after z, up the active path, such that v is
adjacent to Cz9? A minor technicality: Since several edges in the height list might
join the same Cz, we might have to walk ahead in the list to find z9. Close
inspection reveals that the difficulty arises only during retraction or fusion, when
inserting into H(,, ,) an edge formerly in H(,). In that case, all but one of the
edges of H(,) incident to Cz are discarded, so the extra walk can be amortized
over the discarded edges. To avoid traversing the other edges incident to Cz,
which all come from H(,, ,), we regroup them into a sublist within the height
list. As it turns out, the question above about finding z9 is never asked with (u, v)
being one of those edges so the sublist never needs to be traversed, and the
question can always be answered in constant amortized time.

Where all that is useful is in locating the heaps H(i, j) in which to insert edges
(in extension and retraction). In all cases, zj is fixed and we must insert edges
into the appropriate H(i, j)’s. For each edge, we must find the next zi up the
active path such that Czi

is adjacent to an endpoint of the edge. As we just
observed, this can be done in constant amortized time. So, for fixed j, in one pass
through the list of heaps H(i, j) we can identify which ones to select for insertion
in constant time per edge-to-be-inserted plus O(d) time in overhead.

What are the maintenance costs of border structures and height lists? We give
a brief sketch only, attempting mostly to explain why we use shallow trees for
border structures. An extension typically causes new edges to be added to the
height lists of the vertices incident to the extension edge. No border structure
needs updating, however, except the one corresponding to the newly created Czk

.

1044 BERNARD CHAZELLE

This requires time proportional to the number of new edges considered. Note
that deleting or discarding edges is trivial to handle in the case of height lists,
and can simply be ignored in the case of border structures. During a retraction
(or fusion), two or more Cz’s collapse together. Height lists are easy to maintain.
In the case of border structures, the updating cost per Cz is O(d) for reconfig-
uring plus 1/d per edge for updating the root of the shallow tree (if any). The
latter cost can be incurred at most d times by a given border edge, since the
height in 7 corresponding to its incident Cz increases by at least one at every
retraction/fusion. This gives a per-edge cost of O(1); note that without shallow
trees, this cost would be a prohibitive O(d). There are at most d Cz’s involved
during a given retraction or extension, so conservatively the reconfiguration costs
of O(d) add up to O(d2n0). All together, this gives bookkeeping costs of
O(m0 1 d2n0). In sum, by choosing b large enough, we ensure that

time for step @2, 3# ,
b

2
~n 1 m 1 d2n0! .

Turning now to step [4], consider an internal node z of 7. If dz 5 1, we say
that z is full, if its number nz of children (ie, # vertices in Cz) is equal to S(t,
1)3 5 8. If dz . 1, the node z is full if nz 5 S(t 2 1, S(t, dz 2 1))3 and its
children are also full. Given a full z, the expansion of Cz relative to G0 has a
number Nz of vertices equal to S(t, dz)

3; we do not include the fusion subgraphs
in the count. For z not to be full, the construction of Cz must have terminated
prematurely, either because a fusion pruned a part of 7 including z or more
simply because the algorithm finished. Therefore, either z is full or else all its
children but (the last) one are. This shows that Nz $ (nz 2 1)S(t, dz 2 1)3, for
all dz . 1. By construction, the number of vertices in Cz \ B is at most S(t 2 1,
S(t, dz 2 1))3, and so we can apply the induction hypothesis and bound the time
for msf (Cz \ B, t 2 1) by

b~t 2 1!~mz 1 S~t, dz 2 1!3~nz 2 1!! # b~t 2 1!~mz 1 Nz! , (4)

where mz is the number of edges in Cz \ B. Accounting for fusions, recall that a
vertex of Cz may not be the contraction of just one Cz9, for some child z9 of z in
7, but also subgraphs of the form Cv, where v is a node pruned from the active
path of 7 together with its “fusion tree” below. Fusion trees are treated
separately, and so the inequality in (4) applies to any such v as well. Over all
nodes of 7 (and all fusion trees), we have ¥ mz # m0 2 uB u and ¥ Nz # dn0 (at
most n0 vertices per level), so the overall recursion time is bounded by b(t 2
1)(m0 2 uB u 1 dn0).

time for step @4# , b~t 2 1!~m0 2 uB u 1 dn0! .

Finally, step [5] recurses with respect to the graph F ø B. Its number of vertices
is n0 , n # S(t, d)3 and F is cycle-free, so by induction,

time for step @5# , bt~n0 2 1 1 uB u 1 d3~n0 2 1!! .

1045A Minimum Spanning Tree Algorithm

Adding up all these costs gives a running time at most

btm0 1 bSm

2
2 m0 1 uB uD 1 2btd3n0 1

bn

2
.

By Lemma 4.1, this is no more than

btm 2 b~m 2 m0!S t 2
1

2D 1 3btd3n0 1
bn

2
.

Finally, using the fact that n0 # n/ 2c, we find that the complexity of msf (G, t) is
bounded by bt(m 1 d3(n 2 1)), which completes the proof by induction.

When using msf to compute the MST of a connected graph with n vertices and
m edges, our particular choice of d ensures that d3n 5 O(m) and, as shown
below, t 5 O(a(m, n)). It follows that the MST of G is computed in time
O(ma(m, n)) and Theorem 1.1 is thus proven. e

LEMMA 5.1. If d 5 c(m/n)1/3 and t 5 min{i . 0un # S(i, d)3}, then

t 5 O~a~m,n!! .

PROOF. Ackermann’s function A(i, j) is defined for any integers i, j $ 0
[Tarjan 1975]:

5 A~0, j! 5 2j, for any j $ 0;
A~i, 0! 5 0 and A~i, 1! 5 2, for any i $ 1;
A~i, j! 5 A~i 2 1, A~i, j 2 1!! , for any i $ 1, j $ 2,

and for any n, m . 0,

a~m, n! 5 minH i $ 1: AS i, 4m

n D . log nJ .

For i $ 1 and j $ 4,

A~3i, j! 5 A~3i 2 1, A~3i, j 2 1!! . 2A(3i , j21) 5 2A(3i21, A(3i , j22)) .

Using the monotonicity of A, since A(3i, j 2 2) $ j, we have

A~3i, j! . 2A(i, j) . (5)

It is easily shown by induction that, for any u $ 2, v $ 3, A(u, v) $ 2v11, and
so

A~3i, j! 5 A~3i 2 1, A~3i, j 2 1!! $ A~3i 2 1, 2 j! $ A~i, 2 j! . (6)

Trivially, A(u 2 1, v) # S(u, v), for any u, v $ 1, which implies that

S~9a~m, n! 1 1, d! $ A~9a~m, n! , d! .

1046 BERNARD CHAZELLE

Therefore, by (5, 6) and with d $ 4,

S~9a~m, n! 1 1, d! . 2A(3a(m ,n),d) $ 2A(a(m ,n),2d)

$ 2A(a(m ,n),4m/n) . n ,

and therefore the smallest t such that n # S(t, d)3 satisfies t # 9a(m, n) 1 1.
e

REFERENCES

BORŮVKA, O. 1926. O jistém problému minimálním. Práce Moravské Pr̂irodovědecké Společnosti 3,
37–58 (in Czech).

CHAZELLE, B. 2000. The soft heap: an approximate priority queue with optimal error rate. J. ACM 47,
6 (Nov.), 000 – 000.

CHAZELLE, B., AND ROSENBERG, B. 1991. The complexity of computing partial sums off-line. Int.
J. Comput. Geom. Appl. 1, 33– 45.

CHERITON, D., AND TARJAN, R. E. 1976. Finding minimum spanning trees, SIAM J. Comput. 5,
724 –742.

DIXON, B., RAUCH, M., AND TARJAN, R. E. 1992. Verification and sensitivity analysis of minimum
spanning trees in linear time. SIAM J. Comput. 21, 1184 –1192.

FREDMAN, M. L., AND TARJAN, R. E. 1987. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34, 596 – 615.

FREDMAN, M. L., AND WILLARD, D. E. 1993. Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. J. Comput. Syst. Sci. 48, 424 – 436.

GABOW, H. N., GALIL, Z., SPENCER, T., AND TARJAN, R. E. 1986. Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109 –122.

GRAHAM, R. L., AND HELL, P. 1985. On the history of the minimum spanning tree problem. Ann.
Hist. Comput. 7, 43–57.

KARGER, D. R., KLEIN, P. N., AND TARJAN, R. E. 1995. A randomized linear-time algorithm to
find minimum spanning trees. J. ACM 42, 321–328.

KING, V. 1997. A simpler minimum spanning tree verification algorithm. Algorithmica 18, 263–270.
KOMLÓS, J. 1983. Linear verification for spanning trees. Combinatorica 5, 57– 65.
NEŠETŘIL, J. 1997. A few remarks on the history of MST-problem. Arch. Math. Brno 33, 15–22.
SHARIR, M., AND AGARWAL, P. K. 1995. Davenport-Schinzel sequences and their geometric

applications. Cambridge Univ. Press.
TARJAN, R. E. 1975. Efficiency of a good but not linear set-union algorithm. J. ACM 22, 215–225.
TARJAN, R. E. 1978. Complexity of monotone networks for computing conjunctions. Ann. Disc.

Math. 2, 121–133.
TARJAN, R. E. 1983. Data Structures and Network Algorithms. SIAM, Philadelphia, Pa.
YAO, A. 1975. An O(uE ulog loguV u) algorithm for finding minimum spanning trees. Inf. Process.

Lett. 4, 21–23.

RECEIVED FEBRUARY 1998; REVISED JULY 1999; ACCEPTED APRIL 2000

Journal of the ACM, Vol. 47, No. 6, November 2000.

1047A Minimum Spanning Tree Algorithm

