Soviet Rail Network, 1955



Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Minimum Cut Problem

#### Flow network.

- Digraph G = (V, E), nonnegative edge capacities c(e).
- Two distinguished nodes: s = source, t = sink.
- Assumptions: no parallel edges, no edges entering s or leaving t.



#### Cuts

2

## Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$ .

Def. The capacity of a cut (A, B) is:  $cap(A, B) = \sum_{e \text{ out of } A} c(e)$ 





Max Flow, Min Cut COS 521

> Kevin Wayne Fall 2005

Minimum Cut Problem

#### Min s-t cut problem. Find an s-t cut of minimum capacity.



Def. An s-t flow is a function that satisfies:

• For each  $e \in E$ : • For each  $v \in V - \{s, t\}$ :  $\sum_{e \text{ into } v} f(e) \le c(e)$  (capacity) (conservation)

Def. The value of a flow f is:  $val(f) = \sum_{e \text{ out of } s} f(e)$ .



Maximum Flow Problem

#### Max flow problem. Find s-t flow of maximum value.



7



Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.





## Flows

## Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = val(f).$$

Pf.

$$val(f) = \sum_{e \text{ out of } s} f(e)$$
  
by flow conservation, all terms  $\rightarrow = \sum_{v \in A} \left( \sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$ 
$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

val(f) =

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.



Flows and Cuts

9

11

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have  $val(f) \leq cap(A, B).$ 

Pf.  

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B)$$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.



Towards a Max Flow Algorithm

## Greedy algorithm.

- Start with f(e) = 0 for all edge  $e \in E$ .
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



Towards a Max Flow Algorithm

## Greedy algorithm.

- Start with f(e) = 0 for all edge  $e \in E$ .
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



Towards a Max Flow Algorithm

## Greedy algorithm.

- Start with f(e) = 0 for all edge  $e \in E$ .
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.







13

15

**Residual Graph** 

## Original edge: $e = (u, v) \in E$ .

Flow f(e), capacity c(e).



14

16

## Residual edge.

- "Undo" flow sent.
- e = (u, v) and e<sup>R</sup> = (v, u).
- Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

### Residual graph: $G_f = (V, E_f)$ .

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : c(e) > 0\}.$



Ford-Fulkerson Algorithm



Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

- Pf. Let f be a flow. Then TFAE:
  - (i) There exists a cut (A, B) such that val(f) = cap(A, B).
  - (ii) Flow f is a max flow.
  - (iii) There is no augmenting path relative to f.
- (i)  $\Rightarrow$  (ii) This was the corollary to weak duality lemma.
- (ii)  $\Rightarrow$  (iii) We show contrapositive.
- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

## (iii) $\Rightarrow$ (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of  $A, s \in A$ .
- By definition of f,  $t \notin A$ .

$$val(f) = \sum_{\substack{e \text{ out of } A}} f(e) - \sum_{e \text{ in to } A} f(e)$$
$$= \sum_{\substack{e \text{ out of } A}} c(e)$$
$$= cap(A, B) \bullet$$



17

19

original network

Analysis

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities  $c_f(e)$  remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most val( $f^*$ )  $\leq$  nC iterations. It can be implemented in O(mnC) time.

Pf. Each augmentation increase value by at least 1. •

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer. Pf. Since algorithm terminates, theorem follows from invariant.

## Ford-Fulkerson: An Exponential Input

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?



Choosing Good Augmenting Paths

#### Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Ford-Fulkerson: A Pathological Input

#### Q. Is Ford-Fulkerson algorithm finite?

Let  $r = \frac{-1 + \sqrt{5}}{2} \approx 0.618...$  [  $r^{n+2} = r^n - r^{n+1}$ ] Max flow =  $1 + r + r^2$ .

Augmentations: first augment 1 unit, then repeatedly choose path with lowest capacity.



Shortest Augmenting Path: Overview of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most O(mn) augmentations. It can be implemented in  $O(m^2n)$  time.

- O(m) time to find shortest augmenting path via BFS.
- O(m) augmentations for paths of exactly k edges. •

#### ` k ∢ n

Shortest Augmenting Path: Analysis

#### Level graph.

- number of edges
- Define  $\ell(v)$  = length of shortest s-v path in G.
- L\_G = (V, F) is subgraph of G that contains only those edges  $(u,v) \in E$  with  $\ell(v)$  =  $\ell(u)$  + 1.
- Compute  $L_{G} \text{ in } O(m \text{+} n)$  time using BFS, deleting back and side edges.
- . P is a shortest s-u path in G iff it is an s-u path  $\mathsf{L}_{\mathsf{G}}$



Shortest Augmenting Path: Analysis

L2. After at most m augmentations, the length of the shortest augmenting path strictly increases.

- At least one edge (the bottleneck edge) is deleted from L after each augmentation.
- No new edges added to L until length of shortest path strictly increases.



Shortest Augmenting Path: Analysis

- L1. The length of the shortest augmenting path never decreases.
- . Let f and f' be flow before and after a shortest path augmentation.
- . Let L and L' be level graphs of  $G_{\rm f}$  and  $G_{\rm f}$
- Only back edges added to G<sub>f</sub>
- Path with back edge has length greater than previous length.



#### Shortest Augmenting Path: Review of Analysis

L1. The length of the shortest augmenting path never decreases.

L2. After at most m augmentations, the length of the shortest augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm performs at most O(mn) augmentations. It can be implemented in  $O(m^2n)$  time.

Note:  $\Theta(mn)$  augmentations necessary on some networks.

- Try to decrease time per augmentation instead.
- Dynamic trees ⇒ O(mn log n) [Sleator-Tarjan, 1983]
- Simple idea  $\Rightarrow O(mn^2)$

Shortest Augmenting Path: Improved Version

#### Two types of augmentations.

- Normal augmentation: length of shortest path doesn't change.
- Special augmentation: length of shortest path strictly increases.
- L3. Group of normal augmentations takes O(mn) time.
- Explicitly maintain level graph it changes by at most 2n edges after each normal augmentation.
- Start at s, advance along an edge in L until reach t or get stuck.
- if reach t, augment and delete at least one edge
- if get stuck, delete node





Shortest Augmenting Path: Improved Version



Stop: length of shortest path must have strictly increased.

Shortest Augmenting Path: Improved Version

#### Two types of augmentations.

29

31

- Normal augmentation: length of shortest path doesn't change.
- Special augmentation: length of shortest path strictly increases.
- L3. Group of normal augmentations takes O(mn) time.
- At most n advance steps before you either
  - get stuck: delete a node from level graph
  - reach t: augment and delete an edge from level graph

Theorem. Algorithm runs in O(mn<sup>2</sup>) time.

- O(mn) time between special augmentations.
- At most n special augmentations.

32

30

Shortest Augmenting Path: Improved Version

(5)

(2)

# History of Worst-Case Running Times

| Year                                  | Discoverer           | Method                    | Asymptotic Time                                                                 |
|---------------------------------------|----------------------|---------------------------|---------------------------------------------------------------------------------|
| 1951                                  | Dantzig              | Simplex                   | m n² C †                                                                        |
| 1955                                  | Ford, Fulkerson      | Augmenting path           | m n <i>C</i> †                                                                  |
| 1970                                  | Edmonds-Karp         | Shortest path             | m² n                                                                            |
| 1970                                  | Edmonds-Karp         | Fattest path              | m log C (m log n) †                                                             |
| 1970                                  | Dinitz               | Improved shortest path    | m n²                                                                            |
| 1972                                  | Edmonds-Karp, Dinitz | Capacity scaling          | m² log C †                                                                      |
| 1973                                  | Dinitz-Gabow         | Improved capacity scaling | m n log C †                                                                     |
| 1974                                  | Karzanov             | Preflow-push              | n <sup>3</sup>                                                                  |
| 1983                                  | Sleator-Tarjan       | Dynamic trees             | m n log n                                                                       |
| 1986                                  | Goldberg-Tarjan      | FIFO preflow-push         | m n log (n² / m)                                                                |
|                                       |                      |                           |                                                                                 |
| 1997                                  | Goldberg-Rao         | Length function           | m <sup>3/2</sup> log (n² / m) log C †<br>mn <sup>2/3</sup> log (n² / m) log C † |
| t Edge canacities are between 1 and C |                      |                           | 1                                                                               |

† Edge capacities are between 1 and C.

next time