
Using SDPs to design approximation algorithms.

Symmetric n×n matrix M with real entries is positive semidefinite
(psd) if it can be represented as M =AT A for some n×n matrix A.

Thinking of the columns of A as n-dim vectors u1, u2,.., un,
we see that (i, j) entry of M is M(i, j) = ui· uj . 

General form of Semidefinite Program (SDP): Find n× n psd matrix X 
that satisfies  as· X ≥ bs for s=1, 2, …, m
and minimizes c · X.

Here as and c are n2-dimensional vectors.

In other words, SDP consists of finding a set of n vectors u1, u2,
.., un ∈ <

n such that the inner-products ui· uj satisfy some given linear 
constraints and you minimize some linear function of the innerproducts.

In HW4 we saw how to solve SDPs in polynomial time using the 
Ellipsoid algorithm, and a separation oracle for the semidefinite cone.



SDP relaxation for MAX-CUT

Problem: Given G=(V, E) find a cut (S, Sc) that maximizes the number
of edges E(S, Sc) in the cut (S, Sc).

We can represent this as the following quadratic integer program:

Find x1, x2, .. xn ∈ {-1, 1} so as to maximize:

∑(i, k) ∈ E ¼ (xi –xk)2

SDP relaxation:

Find u1, u2, …, un ∈ <
n such that |ui|2 =1 ∀ i and to maximize

∑(i, k)∈ E ¼ |ui –uk|2

Note: (i) This is a relaxation since {-1, 1} solutions are still feasible.
(ii) |ui|2 =1 is same as ui· ui =1 and |ui –uk|2 = ui· ui + uk· uk -2ui · uk

So this fits the SDP paradigm.



Rounding the Max-Cut SDP (Goemans-Williamson ’94)

Pick a random unit vector z ∈ <n. Let S ={i: ui· z ≥ 0}. 
Output cut (S, Sc). 

Analysis. We are essentially picking a random hyperplane through the 
origin and partitioning vectors according to which side they lie on. 
We estimate the probability that an edge (i, k) is in the final cut.

Let Θik = angle between ui, uk = cos-1 (ui· uk)

Pr[u_i, u_k are on opp. sides of a random hyperplane] = Θik/π

E[# of edges in final cut] = ∑(ik)∈ E Θi k/π.   (*)

SDP value = ∑(i k)∈ E ¼ |vi –vk|2 = ∑(i k) ∈ E ½ (1 –cos(Θi k))   (**)

Fact: For all Θ ∈ [0,π], Θ/π ≥ 0.878 × ½ (1 –cos(Θ))

So (*) is at least 0.878 × (**). Thus this gives a 0.878-approximation.



Integrality gap

The Goemans-Williamson analysis also shows that 

MAX-CUT ≥ 0.878 × (Opt. value of SDP relaxation)

We say that the relaxation has integrality gap at most 0.878.

(In fact this estimate is tight for some graphs.)



SDP relaxation for C-BALANCED SEPARATOR

Problem: Given G=(V, E) find a cut (S, Sc) whose each side contains at
least Cn nodes and that minimizes |E(S, Sc)|.

We can represent this as the following quadratic integer program:

Find x1, x2, .., xn ∈ {-1, 1} satisfying ∑i<k ¼ (xi –xk)2
so as to minimize:

∑(i, k) ∈ E ¼ (xi –xk)2

SDP Relaxation: Try 1

Find unit vectors u1, u2, .., un ∈ <
n satisfying ∑i < k ¼ |ui – uk|2 and

minimizes ∑(i, k) ∈ E ¼ |vi –vk|2.

The Goemans-Williamson analysis does not extend to minimization problems
Such as this one. The inequality goes the wrong way! We need an 
upperbound on the cost of the output solution, not a lowerbound.

In fact, this relaxation has integrality gap Ω(n).



SDP Relaxation for C-BALANCED SEPARATOR: Try 2

General idea behind stronger relaxations: throw in constraints 
that are satisfied by the {-1, 1} solution.

Obs.: If x1, x2, x3 ∈ {-1, 1} then (x1 –x2)2 + (x2 –x3)2 ≥ (x1 –
x3)2 (“Triangle inequality”)

Find unit vectors u1, u2, .., un ∈ <
n satisfying (a) ∑i<k ¼ |ui –uk|2, 

(b) ∀ i, k, l |ui –uk|2 + |uk –ul|2 ≥ |ui –ul|2 and 
Minimizing ∑(i, k) ∈ E ¼ |ui –uk|2.

Let OPTSDP = optimum value of this SDP. 

Thm (Arora, Rao, Vazirani’04) There is a randomized rounding algorithm 
that uses these vectors to produce a C’-balanced cut whose capacity is 
at most O(√log n)× OPTSDP. Here C’= C/5.



Main Lemma: For some Δ = Ω(1/√log n) there is randomized poly-time 
algorithm that,given any vectors u1, u2, .., un satisfying the SDP 
constraints, finds sets S, T of C’n vectors each such that for 
each ui ∈ S,uk ∈ T:

|ui – uj|2 ≥ Δ. (We say such sets are “Δ-separated.”)

(Aside: in this Lemma, Δ is best possible up to a constant factor.)

Claim: These sets allow us to find a C’-balanced cut of capacity 
· SDPOPT/Δ

Proof: Define d(ui, uk) as |ui –uk|2. Note: this satisfies triangle inequality.  
Define d(ui, S) = minu{k }∈ S {d(ui, uk)}.

For each x ∈ [0,Δ) consider the cut (Sx, Sx
c) where Sx ={i: d(ui, S) · x},

and take the cut of minimum capacity among all such cuts. (Note: we only 
Need to compare at most n distinct cuts.) Note that each such cut is
C’-balanced since S and T are on opposite sides. Let K be the capacity of
the output cut.

We show  ∑(i, k) ∈ E d(ui, uk) ≥ K Δ, which will prove the Claim. 



Why ∑(i, k) ∈ E d(ui, uk) ≥ K Δ. 

Consider ∫0Δ |E(Sx, Sx
c)| dx.

The function being integrated has value at least K in the entire interval,
so the value is at least K Δ.

On the other hand, an edge (ui, uk) contributes to this integral only
when x ∈ [d(ui, S), d(uk, S)). 

Triangle inequality implies that d(uk, S) – d(ui, S) · d(ui, uk).

We conclude that the value of the integral is at most 
∑(i, k) ∈ E d(ui, uk).

QED.



Proof of [ARV] Theorem on Δ-separated sets (baby version)

We prove for Δ =1/log n and c’ = c/100 or so (Δ =1/√log n is harder!)

Poincare’s Lemma: Let d be large, v :arbitrary unit vector ∈ <d and 
z: random unit vector.

Then the real-valued random variable z·v √d  is distributed essentially
like the gaussian with mean 0 and standard deviation 1.

(Intuition:Mean =0 is clear since z·v is distributed symmetrically about 
0; the distributions z and –z are identical. The gaussian behavior is 
deduced by a simple volume computation.)

Claim: Foll. algorithm produces Δ-sep. sets whp. Pick a random unit
vector z and compute u1·z, u2·z,.., un·z. Let ε be a suitable constant
that depends on c.  Let S = {i: ui· z <- ε/√d }, T= {j: uj· z > ε/√d}.



Proof sketch: 
Claim (i) Whp, ∀ i, k  |<ui –uk, z>| · O(√log n) × |ui –uk|2/√d.

Reason: The probability that a Gaussian random variable takes a value
that is s standard deviations away from the mean is roughly exp (-s2/2).
Here we are interested in s =O(√log n), which happens with probability
exp(-log n) = n-c. The number of pairs (i, k) is at most n^2, so the union
bound implies the claim.

Now note that if ui ∈ S, uk ∈ T then (uk –ui)· z ≥ 2ε/√d. If the event
in Claim (i) happens, then we have |ui –uk|2 ≥ Ω(1/log n), and so 
S, T are Δ-separated for Δ = Ω(1/log n).

Claim (ii) Probability |S|, |T| ≥ c’ n is Ω(1). (Constt c’ to be determined.)

Let Sz = {i: <ui, z> ≥ 0}. Note: this is exactly the Goemans-Williamson
cut. Hence E[∑i < k 1] ≥ 0.878 × ∑i < k ¼ |ui –uk|2 ≥ 0.878× c(1-c)n2.

Averaging implies that with probability 0.5, this quantity is Ω(n2), in 
which case both Sz, and its complement have Ω(n) nodes.

Finally, Gaussian behavior of projections ⇒ With prob 0.99, |S| ≥ |Sz| - 100ε n.
Making ε small enough, we conclude that with probability > 0.49, |S| = Ω(n).


