Using SDPs to design approximation algorithms.

Symmetric n×n matrix M with real entries is *positive semidefinite* (psd) if it can be represented as $M = A^T A$ for some n×n matrix A.

Thinking of the columns of A as n-dim vectors u_1 , u_2 ,..., u_n , we see that (i, j) entry of M is M(i, j) = $u_i \cdot u_j$.

General form of Semidefinite Program (SDP): Find n× n psd matrix X that satisfies $a_s \cdot X \ge b_s$ for s=1, 2, ..., m and minimizes $c \cdot X$.

Here a_s and c are n^2 -dimensional vectors.

In other words, SDP consists of finding a set of n vectors u_1 , u_2 , ..., $u_n \in \Re^n$ such that the inner-products u_i u_j satisfy some given linear constraints and you minimize some linear function of the innerproducts.

In HW4 we saw how to solve SDPs in polynomial time using the Ellipsoid algorithm, and a separation oracle for the semidefinite cone.

SDP relaxation for MAX-CUT

Problem: Given G=(V, E) find a cut (S, S^c) that maximizes the number of edges $E(S, S^c)$ in the cut (S, S^c) .

We can represent this as the following quadratic integer program:

Find $x_1, x_2, \ldots x_n \in \{-1, 1\}$ so as to maximize:

$$\sum_{(i, k) \in E} \frac{1}{4} (x_i - x_k)^2$$

SDP relaxation:

Find u_1 , u_2 , ..., $u_n \in \Re^n$ such that $|u_i|_2 = 1 \forall i$ and to maximize $\sum_{(i, k) \in E} \frac{1}{4} |u_i - u_k|^2$

Note: (i) This is a relaxation since {-1, 1} solutions are still feasible. (ii) $|u_i|_2 = 1$ is same as $u_i \cdot u_i = 1$ and $|u_i - u_k|^2 = u_i \cdot u_i + u_k \cdot u_k - 2u_i \cdot u_k$ So this fits the SDP paradigm.

Rounding the Max-Cut SDP (Goemans-Williamson '94)

Pick a random unit vector $z \in \Re^n$. Let S ={i: $u_i \cdot z \ge 0$ }. Output cut (S, S^c).

Analysis. We are essentially picking a random hyperplane through the origin and partitioning vectors according to which side they lie on. We estimate the probability that an edge (i, k) is in the final cut.

Let
$$\Theta_{ik}$$
 = angle between u_i , u_k = cos⁻¹ (u_i · u_k)

Pr[u_i, u_k are on opp. sides of a random hyperplane] = Θ_{ik}/π

E[# of edges in final cut] = $\sum_{(ik)\in E} \Theta_{ik}/\pi$. (*)

SDP value =
$$\sum_{(i \ k) \in E} \frac{1}{4} |v_i - v_k|^2 = \sum_{(i \ k) \in E} \frac{1}{2} (1 - \cos(\Theta_{i \ k}))$$
 (**)

Fact: For all $\Theta \in [0,\pi]$, $\Theta/\pi \ge 0.878 \times \frac{1}{2} (1 - \cos(\Theta))$ So (*) is at least $0.878 \times (**)$. Thus this gives a 0.878-approximation.

Integrality gap

The Goemans-Williamson analysis also shows that

MAX-CUT \geq 0.878 \times (Opt. value of SDP relaxation)

We say that the relaxation has *integrality gap* at most 0.878.

(In fact this estimate is tight for some graphs.)

SDP relaxation for C-BALANCED SEPARATOR

Problem: Given G=(V, E) find a cut (S, S^c) whose each side contains at least Cn nodes and that minimizes $|E(S, S^c)|$.

We can represent this as the following quadratic integer program:

Find $x_1, x_2, ..., x_n \in \{-1, 1\}$ satisfying $\sum_{i < k} \frac{1}{4} (x_i - x_k)^2$ so as to minimize:

 $\sum_{(i, k) \in E} \frac{1}{4} (x_i - x_k)^2$

SDP Relaxation: Try 1

Find unit vectors u_1 , u_2 , ..., $u_n \in \Re^n$ satisfying $\sum_{i < k} \frac{1}{4} |u_i - u_k|^2$ and minimizes $\sum_{(i, k) \in E} \frac{1}{4} |v_i - v_k|^2$.

The Goemans-Williamson analysis does not extend to minimization problems Such as this one. The inequality goes the wrong way! We need an *upperbound* on the cost of the output solution, not a *lowerbound*.

In fact, this relaxation has integrality gap $\Omega(n)$.

SDP Relaxation for C-BALANCED SEPARATOR: Try 2

General idea behind stronger relaxations: throw in constraints that are satisfied by the {-1, 1} solution.

Obs.: If $x_1, x_2, x_3 \in \{-1, 1\}$ then $(x_1 - x_2)^2 + (x_2 - x_3)^2 \ge (x_1 - x_3)^2$ ("Triangle inequality")

Find unit vectors u_1 , u_2 , ..., $u_n \in \Re^n$ satisfying (a) $\sum_{i < k} \frac{1}{4} |u_i - u_k|^2$, (b) $\forall i, k, l |u_i - u_k|^2 + |u_k - u_l|^2 \ge |u_i - u_l|^2$ and Minimizing $\sum_{(i, k) \in E} \frac{1}{4} |u_i - u_k|^2$.

Let OPT_{SDP} = optimum value of this SDP.

Thm (Arora, Rao, Vazirani'04) There is a randomized rounding algorithm that uses these vectors to produce a C'-balanced cut whose capacity is at most $O(\sqrt{\log n}) \times OPT_{SDP}$. Here C'= C/5.

<u>Main Lemma</u>: For some $\Delta = \Omega(1/\sqrt{\log n})$ there is randomized poly-time algorithm that, given any vectors u_1, u_2, \ldots, u_n satisfying the SDP constraints, finds sets S, T of C'n vectors each such that for each $u_i \in S, u_k \in T$:

$$|u_i - u_j|^2 \ge \Delta$$
. (We say such sets are " Δ -separated.")

(Aside: in this Lemma, Δ is best possible up to a constant factor.)

<u>Claim</u>: These sets allow us to find a C'-balanced cut of capacity \leq SDP_{OPT}/ Δ

Proof: Define $d(u_i, u_k)$ as $|u_i - u_k|^2$. Note: this satisfies triangle inequality. Define $d(u_i, S) = \min_{u_k \in S} \{d(u_i, u_k)\}$.

For each $x \in [0, \Delta)$ consider the cut (S_x, S_x^c) where $S_x = \{i: d(u_i, S) \le x\}$, and take the cut of minimum capacity among all such cuts. (Note: we only Need to compare at most n distinct cuts.) Note that each such cut is C'-balanced since S and T are on opposite sides. Let K be the capacity of the output cut.

We show $\sum_{(i, k) \in E} d(u_i, u_k) \ge K \Delta$, which will prove the Claim.

<u>Why $\sum_{(i, k) \in E} d(u_i, u_k) \geq K \Delta$.</u>

Consider $\int_0^{\Delta} |E(S_x, S_x^c)| dx$.

The function being integrated has value at least K in the entire interval, so the value is at least K Δ .

On the other hand, an edge (u_i, u_k) contributes to this integral only when $x \in [d(u_i, S), d(u_k, S))$.

Triangle inequality implies that $d(u_k, S) - d(u_i, S) \le d(u_i, u_k)$.

We conclude that the value of the integral is at most $\sum_{(i, k) \in E} d(u_i, u_k)$.

QED.

We prove for $\Delta = 1/\log n$ and c' = c/100 or so ($\Delta = 1/\sqrt{\log n}$ is harder!)

<u>Poincare's Lemma</u>: Let d be large, v :arbitrary unit vector $\in \Re^d$ and z: random unit vector.

Then the real-valued random variable $z \cdot v \sqrt{d}$ is distributed essentially like the gaussian with mean 0 and standard deviation 1.

(Intuition:Mean =0 is clear since $z \cdot v$ is distributed symmetrically about 0; the distributions z and -z are identical. The gaussian behavior is deduced by a simple volume computation.)

Claim: Foll. algorithm produces \triangle -sep. sets whp. Pick a random unit vector z and compute $u_1 \cdot z$, $u_2 \cdot z$,.., $u_n \cdot z$. Let ε be a suitable constant that depends on c. Let S = {i: $u_i \cdot z < - \varepsilon/\sqrt{d}$ }, T= {j: $u_i \cdot z > \varepsilon/\sqrt{d}$ }.

Proof sketch: <u>Claim (i)</u> Whp, \forall i, k $|\langle u_i - u_k, z \rangle| \leq O(\sqrt{\log n}) \times |u_i - u_k|_2/\sqrt{d}$.

Reason: The probability that a Gaussian random variable takes a value that is s standard deviations away from the mean is roughly exp $(-s^2/2)$. Here we are interested in s = $O(\sqrt{\log n})$, which happens with probability exp $(-\log n) = n^{-c}$. The number of pairs (i, k) is at most n², so the union bound implies the claim.

Now note that if $u_i \in S$, $u_k \in T$ then $(u_k - u_i) \ge 2\epsilon/\sqrt{d}$. If the event in Claim (i) happens, then we have $|u_i - u_k|_2 \ge \Omega(1/\log n)$, and so S, T are Δ -separated for $\Delta = \Omega(1/\log n)$.

<u>Claim (ii)</u> Probability |S|, $|T| \ge c'$ n is $\Omega(1)$. (Constt c' to be determined.)

Let $S_z = \{i: \langle u_i, z \rangle \ge 0\}$. Note: this is exactly the Goemans-Williamson cut. Hence $E[\sum_{i < k} 1] \ge 0.878 \times \sum_{i < k} \frac{1}{4} |u_i - u_k|^2 \ge 0.878 \times c(1-c)n^2$.

Averaging implies that with probability 0.5, this quantity is $\Omega(n^2)$, in which case both S_z , and its complement have $\Omega(n)$ nodes.

Finally, Gaussian behavior of projections \Rightarrow With prob 0.99, $|S| \ge |S_z| - 100\epsilon$ n. Making ϵ small enough, we conclude that with probability > 0.49, $|S| = \Omega(n)$.