Using LP rounding to design approximation algorithms.

Typically used in context of O-1 optimization problem.
Example: Min Vertex Cover. Given 6 =(V, E), find the smallest
set S C V such that for every edge (i, j) eitheri € Sor j€ S

Integer programming formulation:
Minimize 2 x;

x. € {0, 1} Vi
X+ %, > 1 V(@i j)eE

LP formulation: relax to 0 < x, < 1 V i.

Observe: Optimum value of LP relaxation is a lowerbound
on the integer optimum.



Rounding: going from fractional solution to 0-1 soln.

Example: Given fractional solution for Vertex Cover, consider set of
all nodes i such that x, > 3.

- Is a vertex cover since x + X. > 3 = one of them is > 3

* Has size at most 2 x 2., x, é fr'achonal opt
*This simple 2-approx is essenhally the best we know of for VC Il

Randomized rounding: make y_i =1 with prob. x, and O with prob. 1-x,

Observations (Raghavan-Thompson): 1) For any coefficient vector a,
Ela'y] = a- x.(Linearity of Expectation)

(2) The y_i's are independent random variables, so one can use Chernoff
bounds to upperbound the chance that a-y deviates much from
the expectation.



3/4 -approx. for MAX-2SAT

Problem: Given 2-CNF formula, find assignment that maximizes
number of satisfied clauses.

First we write the LP. Have a variable x;, for each boolean variable vy,
and a variable z_ for each clause c. Require O < x, z. < 1

Objective is to maximize 2 z..
If clause c is y; V y; r'epr'esent by x, + x. > z_. (Thus "1"

represents “True” and "0" r'epr'esen'rs Fallse )
If clause is y; V = y; then represent by x; + (1-x;) > z., and so on.

Randomized rounding: make y, =True with prob. x;

Prclause c satisfied] = 1 - (1-x)(1-x)) = x; + x; -x;;

> 2, = XX;
> z, -22/4(byAM>GM)
Z4zc

So E[# of clauses satisfied] \geq 3 X, z,



Running time?

* Method 1: Repeat poly(n, 1/¢) times. take the best assignment.

Averaging shows that at each repetition:
Pr[assignment satisfies > 3-¢ fraction of clauses] > 4¢

* Method 2: Observe that we only use pairwise independence.
Can do the rounding using pairwise indep. Variables.

Can exhaustively search through the probability space (recall HW1);
takes poly(n) time.

Method 2 gives deterministic algorithm!



Next example: O(log n)-approximation for Set Cover.
(prototype of O(log n)-approx for other problems, eg VLSI wiring)

Problem: Given sets S,, S,,.., S, of {1, .., n}, find
smallest subset C such that C N S, # 0 V k.

LP: min X, x

Solve LP. Do randomized rounding.

Vk, Pr[S, gets covered] = 1 -[[. _5 (1-x)>1-(1-1/5)"S > 1-1/e
where S = |S,].

Now repeat randomized rounding t+ times and take union of all the
sets produced.

Pr[S, still uncovered after t reps] < (1/e).

Making t=log, m + 1 we see that this prob. is < 1/em.

E[size of final set] = t x fractional opt. =O(log m) x fractional Opt.



