Using LP rounding to design approximation algorithms.

Typically used in context of 0-1 optimization problem. Example: Min Vertex Cover. Given G = (V, E), find the smallest set $S \subseteq V$ such that for every edge (i, j) either $i \in S$ or $j \in S$

Integer programming formulation:

LP formulation: relax to $0 \le x_i \le 1 \ \forall i$.

Observe: Optimum value of LP relaxation is a lowerbound on the integer optimum.

Rounding: going from fractional solution to 0-1 soln.

Example: Given fractional solution for Vertex Cover, consider set of all nodes i such that $x_i \ge \frac{1}{2}$.

- Is a vertex cover since x_i + $x_j \geq \frac{1}{2} \Rightarrow$ one of them is $\geq \frac{1}{2}$
- Has size at most $2 \times \sum_i x_i = 2 \times \overline{x}$ fractional opt
- •This simple 2-approx is essentially the best we know of for VC !!.

Randomized rounding: make $y_i = 1$ with prob. x_i and 0 with prob. $1 - x_i$

Observations (Raghavan-Thompson): 1) For any coefficient vector a, $E[a \cdot y] = a \cdot x.$ (Linearity of Expectation)

(2) The y_i's are independent random variables, so one can use Chernoff bounds to upperbound the chance that a y deviates much from the expectation. 3/4 -approx. for MAX-2SAT

Problem: Given 2-CNF formula, find assignment that maximizes number of satisfied clauses.

First we write the LP. Have a variable x_i for each boolean variable y_i and a variable z_c for each clause c. Require $0 \le x_i$, $z_c \le 1$

Objective is to maximize $\sum_{c} z_{c}$. If clause c is $y_i \lor y_j$ represent by $x_i + x_j \ge z_c$. (Thus "1" represents "True" and "O" represents "False.") If clause is $y_i \lor \neg y_j$ then represent by $x_i + (1-x_j) \ge z_c$, and so on.

Randomized rounding: make y_i = True with prob. x_i

Pr[clause c satisfied] = 1 -
$$(1-x_i)(1-x_j) = x_i + x_j - x_i x_j$$

$$\geq z_c - x_i x_j$$

$$\geq z_c - z_c^2/4 \text{ (by AM} \geq GM)$$

$$\geq \frac{3}{4} z_c$$

So E[# of clauses satisfied] \geq $\frac{3}{4} \sum_{c} z_{c}$

Running time?

• Method 1: Repeat poly(n, $1/\epsilon$) times; take the best assignment.

Averaging shows that at each repetition: Pr[assignment satisfies > $\frac{3}{4} - \epsilon$ fraction of clauses] $\geq 4\epsilon$

• Method 2: Observe that we only use pairwise independence.

Can do the rounding using pairwise indep. Variables. Can exhaustively search through the probability space (recall HW1); takes poly(n) time.

Method 2 gives deterministic algorithm!

Next example: O(log n)-approximation for Set Cover. (prototype of O(log n)-approx for other problems, eg VLSI wiring)

Problem: Given sets S_1 , S_2 ,..., S_m of $\{1, ..., n\}$, find smallest subset C such that $C \cap S_k \neq \emptyset \forall k$.

LP: min
$$\sum_{i} \mathbf{x}_{i}$$

 $\sum_{i \in Sk} \mathbf{x}_{i} \ge \mathbf{1} \ \forall \ \mathbf{k}$
 $\mathbf{0} \le \mathbf{x}_{i} \le \mathbf{1}$

Solve LP. Do randomized rounding.

$$orall$$
 k, Pr[S_k gets covered] = 1 - $\prod_{i \in S^k} (1-x_i) \ge 1$ - (1-1/S)^S ≥ 1 -1/e where S = |S_k|.

Now repeat randomized rounding t times and take union of all the sets produced. $\Pr[S_k \text{ still uncovered after t reps}] \leq (1/e)^t$. Making t=log_e m + 1 we see that this prob. is $\leq 1/em$.

E[size of final set] = $t \times fractional opt. = O(log m) \times fractional Opt.$