
Using LP rounding to design approximation algorithms.

Typically used in context of 0-1 optimization problem.
Example: Min Vertex Cover. Given G =(V, E), find the smallest 
set S ⊆ V such that for every edge (i, j) either i ∈ S or j ∈ S

Integer programming formulation:

Minimize ∑i xi
xi ∈ {0, 1} ∀ i
xi + xj ≥ 1     ∀ (i, j) ∈ E

LP formulation: relax to 0 · xi · 1 ∀ i.

Observe: Optimum value of LP relaxation is a lowerbound
on the integer optimum.



Rounding: going from fractional solution to 0-1 soln.

Example: Given fractional solution for Vertex Cover, consider set of 
all nodes i such that xi ≥ ½.
• Is a vertex cover since xi + xj ≥ ½ ⇒ one of them is ≥ ½
• Has size at most 2 × ∑i xi = 2 × fractional opt
•This simple 2-approx is essentially the best we know of for VC !!.

Randomized rounding: make y_i =1 with prob. xi and 0 with prob. 1-xi

Observations (Raghavan-Thompson): 1) For any coefficient vector a,
E[a·y]  = a· x.(Linearity of Expectation)

(2) The y_i’s are independent random variables, so one can use Chernoff
bounds to upperbound the chance that a·y deviates much from 
the expectation.



3/4 –approx. for MAX-2SAT 

Problem: Given 2-CNF formula, find assignment that maximizes 
number of satisfied clauses.

First we write the LP. Have a variable xi for each boolean variable yi
and a variable zc for each clause c. Require 0 · xi, zc · 1

Objective is to maximize ∑c zc.
If clause c is yi ∨ yj represent by xi + xj ≥ zc. (Thus “1”
represents “True” and “0” represents “False.”)
If clause is yi ∨ ¬ yj then represent by xi + (1-xj) ≥ zc, and so on.

Randomized rounding: make yi =True with prob. xi

Pr[clause c satisfied] = 1 – (1-xi)(1-xj) = xi + xj –xixj

≥ zc – xixj
≥ zc – zc

2/4 (by AM ≥ GM)
≥ ¾ zc

So E[# of clauses satisfied] \geq ¾ ∑c zc



Running time?

• Method 1: Repeat poly(n, 1/ε) times; take the best assignment.

Averaging shows that at each repetition:
Pr[assignment satisfies > ¾-ε fraction of clauses] ≥ 4ε

• Method 2: Observe that we only use pairwise independence.

Can do the rounding using pairwise indep. Variables.
Can exhaustively search through the probability space (recall HW1);
takes poly(n) time.

Method 2 gives deterministic algorithm!



Next example: O(log n)-approximation for Set Cover. 
(prototype of O(log n)-approx for other problems, eg VLSI wiring)

Problem: Given sets S1, S2,.., Sm of {1, .., n}, find
smallest subset C such that C ∩ Sk ≠ ∅ ∀ k.

LP: min ∑i xi
∑i ∈ Sk xi ≥ 1 ∀ k
0 · xi · 1

Solve LP. Do randomized rounding. 

∀ k, Pr[Sk gets covered] = 1 -∏i ∈ Sk (1-xi) ≥ 1 – (1-1/S)^S ≥ 1-1/e 
where S = |Sk|.

Now repeat randomized rounding t times and take union of all the
sets produced. 
Pr[Sk still uncovered after t reps] · (1/e)t. 
Making t=loge m + 1 we see that this prob. is · 1/em.

E[size of final set] = t × fractional opt. =O(log m) × fractional Opt.


