
Princeton University
COS 521: Advanced Algorithms

Final Exam Fall 2005
Sanjeev Arora

Due Jan 13 4 pm at the latest in my office, Room 307

Instructions: The test has eight questions. The first question (“quickies”) has 5 parts
and is worth 30 points. Each of the remaining seven questions is worth 10 points each.

Finish the test within 48 hours after first reading it. You can consult any notes/handouts
from this class and feel free to quote, without proof, any results from there. You cannot
consult any other source or person in any way.

Do not read the test before you are ready to work on it.

Write and sign the honor code pledge on your exam (The pledge is “I pledge
my honor that I have not violated the honor code during this exam and followed
all instructions.”)

I will be available Jan 3-13 by email to answer any questions. I will also offer to call
you if your confusion does not clear up. In case of unresolved doubt, try to explain your
confusion as part of the answer and maybe you will receive partial credit.
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1. (30 points) The following questions are meant to be “quickies.”

(a) Show that every d-regular bipartite graph can be decomposed into d perfect
matchings.

(b) Suppose n balls are thrown randomly into n bins. Show that there with proba-
bility at least 0.99, at least n0.5 bins have at least log n/(log log n)2 balls.

(c) Suppose somebody gives you an oracle that, given any instance of TSP, finds the
cost of the optimum tour. Show how to use the oracle to generate an optimum
tour.

(d) Suppose Harry and Sally play the following game. Each starts with a quarter and
a dime. Each secretly selects a coin and places it under a cup. The players then
raise their cups. If the coins are equal, Harry gets both. If they are different,
Sally gets both. Write the payoff matrix for this game and compute the optimal
strategies for Harry and Sally in the sense of the minimax theorem.

(e) Suppose we are given n numbers c1, c2, . . . , cn ∈ Q and wish to solve the following
exponential size program:

min
∑

i

cixi (1)∑
i∈S

xi ≥ 1 ∀S ⊆ {1 . . . , n} , |S| = n/2 (2)

Give as fast an algorithm as you can.

2. (10 points) Consider a matrix of numeric data where each entry is fractional, but each
row and column is an integer. Prove that you can “round off” this matrix, rounding
each entry to the next integer above or below, without changing the row or column
sums. (Hint: Flows.)

3. (10 points) There is a data stream of items each labeled with a value in {1, . . . , N}.
We wish to compute the following quantity by making one pass over the data:∑

i

i4fi,

where fi is the number of items that are labeled i. Sketch an algorithm that ap-
proximates this within factor 1 + ε using space that is logarithmic in n (or close to
that).

4. (10 points) This question concerns the problem of hiring out one room to tourists who
desire it. The ith tourist can arrive at or after a certain date si and has to leave by
a certain deadline date di. It is only worthwhile for him to visit if he can stay for ti
consecutive days in the interval [si, di]. Only one tourist can stay in the room at a
time (they hate roommates).

Note that in general not all tourists will be accomodated since we only have one room.
Describe an algorithm that finds the largest set of tourists who can be accomodated.
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Modify your algorithm to find the revenue-maximizing schedule (i.e. the one that
rents out the room for the longest period of time).

The inputs are si, ti, di and the running time can depend on D =
∑

i di.

5. (10 points) The following is one of the many hard problems that arise in genome
mapping. Recall that a chromosome can be viewed as a string. We are given a set
of n markers {µ1, µ2, . . . , µn}, which are positions on the chromosome. The goal is
to output a linear ordering of these markers. We are given K “constraints,” where a
constraint is of the form {µi, µjµk}. The constraint is satisfied in the final ordering if
µj appears between µi, µk in that ordering. Note that other markers could also lie in
between µi, µk, and it is also OK for µk to come before µi so long as µj lies between
them.

Let OPT denote the maximum number of constraints that can be satisfied in any
ordering. Describe a polynomial-time algorithm to produce an ordering that satisfies
at least OPT/3.

6. (10 points) Let dij be a distance function on n point, where dij ≥ 0 denotes the
distance between i, j. A Euclidean embedding with distortion C is a set of vectors
u1, u2, . . . , un ∈ <n such that for all i, j:

|ui − uj |22 ≤ dij ≤ C · |ui − uj |22.

Describe a polynomial-time algorithm to compute the minimum C for which such an
embedding exists. (It is also OK to give an algorithm that closely approximates C.)

7. (10 points) Let u1, u2, . . . , un be unit vectors in <m. Then show that there exists
ε1, ε2, . . . , εn = ±1 such that

|ε1u1 + ε2u2 + · · · εnun|2 ≤
√

n.

Show that there also exist εi’s so that the previous inequality is reversed.

8. (10 points) For any weighted graph on n vertices with edge weights wij , let L be the
n× n matrix where Lij = −wij if i 6= j and Lii =

∑
k wik. As usual, λmax(·) denotes

the largest eigenvalue.

(a) Show that L is positive semidefinite.

(b) Show that the value of the maximum cut in the graph is upperbounded by
n
4 λmax(L).

(c) Show that if d1, d2, . . . , dn are any numbers satisfying
∑

i di = 0 then n
4 λmax(L+

diag(d)) is also an upperbound on the value of the maximum cut. Here diag(d)
is the matrix in which all off-diagonal entries are zero and the diagonal entries
are d1, d2, . . . , dn respectively.
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