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Overview

The ML datatype mechanism combines

• sum, or disjoint union, types;

• recursive types;

• abstract types

into a single mechanism.
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Overview

Datatype values are built using constructors.

• e.g., 3::nil.

• e.g., node(empty,1,empty)

Datatype values are decomposed using pat-

tern matching.

fun depth (node (t1, , t2)) =

1 + max(depth t1, depth t2)
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Overview

To analyze these features of ML, we’ll start

with these types:

• Product, or tuple, types.

• Sum, or disjoint union, types.

Then we’ll add recursive and, later, abstract

types.
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Product Types

Product, or tuple, types give you structured

data.

• Nullary products: unit. Sole value is ().

• Binary products: τ1*τ2. Values are ordered

pairs.

• n-ary products: τ1* · · · *τn. Values are or-

dered n-tuples.

• Labelled products, or records: {name:string,
salary:float}. Elements are labelled tu-

ples.

We’ll formalize binary and nullary products.
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Product Types: Abstract Syntax

Adding product types to MinML is easy.

Types τ : := unit | τ1*τ2

Exp′s e : := () | check e1 is () in e2 end |
(e1,e2) | split e1 as (x,y) in e2 end

Values v : := () | (v1,v2)

The variables x and y are bound within e2 in

the expression split e1 as (x,y) in e2 end.

5



Product Types: Static Semantics

Γ ` () : unit

Γ ` e1 : unit Γ ` e2 : τ2
Γ ` check e1 is () in e2 end : τ2

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1,e2) : τ1*τ2

Γ ` e1 : τ1*τ2 Γ, x:τ1, y:τ2 ` e2 : τ
Γ ` split e1 as (x,y) in e2 end : τ
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Product Types: Dynamic Semantics

check () is () in e end 7→ e

e1 7→ e′
1

check e1 is () in e2 end 7→ check e′
1 is () in e2 end
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Product Types: Dynamic Semantics

e1 7→ e′
1

(e1,e2) 7→ (e′
1,e2)

e2 7→ e′
2

(v1,e2) 7→ (v1,e
′
2)

split (v1,v2) as (x,y) in e end 7→ {v1, v2/x, y}e

e1 7→ e′
1

split e1 as (x,y) in e2 end 7→ split e′
1 as (x,y) in e2 end
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Product Types: Example

ML code:

fun ifact (0, a) = a

| ifact (n, a) = ifact (n-1, n*a)

MinML code:

fun ifact (p:int*int) is

split p as (n, a) in

if n=0 then a else ifact (-(n,1), *(n, a)) fi
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Product Types: Example

The split construct provides a single layer of

pattern matching.

• No nested tuples.

• No possibility of failure.
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Product Types: Safety

Preservation:

• By induction on evaluation.

• Using substitution lemma for split.

Progress:

• Canonical forms of product type are pairs.

• Can always split a pair of the right type.
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Sum Types

Sum, or disjoint union, types give you choices.

• Nullary: void, with no elements.

• Binary: τ1+τ2. Values are either a value of

type τ1 tagged inl, or a value of type τ2
tagged inr.

• n-ary: τ1+ · · · +τn.

• Labelled: [present:string, absent:unit].

We’ll consider nullary and binary sums.
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Sum Types: Abstract Syntax

Types τ : := void | τ1+τ2

Exp′s e : := inlτ1+τ2(e1) | inrτ1+τ2(e2) |
caseτ e0 of inl(x:τ1) => e1 | inr(y:τ2) => e2 end

Val ′s v : := inlτ1+τ2(v1) | inrτ1+τ2(v2)

In the expression

caseτ e0 of inl(x:τ1) => e1 | inr(y:τ2) => e2 end,

the variable x is bound in e1 and the variable

y is bound in e2.
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Sums: Informal Description

The type τ1+τ2 is the disjoint union of τ1 and

τ2.

• Values of each type τ1 and τ2 are included

within it.

• Elements are tagged with inl or inr to

indicate where they came from.

Thus int+int is quite different from int!

• Elements are inl(n) and inr(n).

• Disjoint union is different from ordinary set

union!
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Sums: Informal Description

The case construct provides non-nested, ex-

haustive pattern matching over a sum type:

case e:int+int

of inl(x:int) => +(x,1)

| inr(y:int) => -(y,1)
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Sums: Static Semantics

Γ ` e1 : τ1
Γ ` inlτ1+τ2(e1) : τ1+τ2

Γ ` e2 : τ2
Γ ` inrτ1+τ2(e2) : τ1+τ2

Γ ` e0 : τ1+τ2 Γ, x1:τ1 ` e1 : τ Γ, x2:τ2 ` e2 : τ

Γ ` caseτ e0 of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 end
: τ
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Sums: Dynamic Semantics

e 7→ e′
inlτ1+τ2(e) 7→ inlτ1+τ2(e

′)

e 7→ e′
inrτ1+τ2(e) 7→ inrτ1+τ2(e

′)

caseτ inlτ1+τ2(v) of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 end
7→ {v/x1}e1

caseτ inrτ1+τ2(v) of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 end
7→ {v/x2}e2
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Programming with Sums

Booleans are definable from sums!

• bool = unit+unit.

• true = inl(()), false = inr(()).

• if e then e1 else e2 fi =

case e of inl(x1:unit) => e1 | inr(x2:unit) => e2 end.
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Programming with Sums

In fact any non-recursive data type is similarly

definable.

datatype T = A | B | C of int

• T = unit+(unit+int).

• A = inl(()).

• B = inr(inl(())).

• C(n) = inr(inr(n)).
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Programming with Sums

Pattern matching corresponds to case analysis:

case e

of A => a

| B => b

| C(z) => c
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Programming with Sums

Corresponding MinML code:

case e

of inl(w:unit) => a

| inr(x:unit+int) =>

case x

of inl(y:unit) => b

| inr(z:int) => c
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Sums: Safety

Preservation: by induction on evaluation.

Progress: by induction on typing.

• Canonical forms of type τ1+τ2: inlτ1+τ2(v1)

or inrτ1+τ2(v2).

• Proof by induction on typing.

The exhaustiveness of case is crucial for progress!
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Unit and Void

The type unit has one element, (). The type

void has no elements! Consequently,

• If a function has type int→void, it must

not terminate for any argument.

• If a function has type int→unit, it might

return, but the result has to be ().

(Some languages use void when they mean

unit . . . .)
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The Null Pointer

Many languages have a so-called null pointer

or null object.

• The value null in Java.

• The cast (T *)0 in C.

The “null pointer” is used to model the ab-

sence of a value.

• Often as a default initial value for variables.

• As a “base case” for complex data struc-

tures.

24



The Null Pointer

The null pointer is a standard source of bugs.

• Null pointer exception in Java.

• Bus error in C.

Standard languages have no ability to track

whether a pointer is null.

• Must check for null on each access.

• Explicit null checks do not change the type.
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The Null Pointer

But these problems never arise in ML! Why?

• Absence of “pointer mentality” — value-

oriented programming.

• Without pointers there are no null pointers!

Why are there no null pointers in ML?

• Sum types obviate the need for them!

• SML: datatype ’a option = NONE | SOME of

’a
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The Null Pointer

In ML there is a type distinction between

• A genuine value of type τ , and

• An optional value of type τ option.

The key to this is the presence of sum types.

• Case analysis changes the type from τ option

to τ .

• The type system tracks whether a value is

present or not! There is no need for a NONE

check!
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The Null Pointer

Skeletal ML code for working with options:

fun dispatch (x : τ option) =

case x

of NONE => e0
| SOME ( x’ : τ ) => e1

Within e1 the variable x′ is known not to be

“null”!
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The Null Pointer

Skeletal Java code for working with null point-

ers:

if (x == null)

s1
else

s2

Within s2 the type of x is still Object and might

still be null!
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The Null Pointer

A harder case:

if (MyMethod(x))

s1
else

s2

The compiler cannot (in general) track that

MyMethod returning false implies that x is non-

null!
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Summary

Products support structured data.

• Similar to struct’s in C, but with auto-

matic allocation and no “pointers”.

Sums support alternative data.

• Choice of two distinguishable alternatives.

• Case analysis propagates type change.
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