510: Programming Languages
Product and Sum Types
David Walker
Fall, 2002

Overview

The ML datatype mechanism combines

e SUM, or disjoint union, types;

e recursive types;

e abstract types

into a single mechanism.

Overview

Datatype values are built using constructors.

e €.d., 3::nil.

e 2.9., node(empty,1,empty)

Datatype values are decomposed using pat-
tern matching.

fun depth (node (tl1, _, t2)) =
1 + max(depth t1, depth t2)

Overview

To analyze these features of ML, we'll start
with these types:

e Product, or tuple, types.

e Sum, or disjoint union, types.

Then we'll add recursive and, later, abstract
types.

Product Types

Product, or tuple, types give you structured
data.

e Nullary products: unit. Sole value is ().

e Binary products: m1*71o. Values are ordered
pairs.

e n-ary products: 79*---*x7,. Values are or-
dered n-tuples.

e Labelled products, or records: {name:string,
salary:float}. Elements are labelled tu-
ples.

We’'ll formalize binary and nullary products.
4

Product Types: Abstract Syntax

Adding product types to MinML is easy.

Types T .= wunit | 71*7

Exp's e () | checkeq is () inep end |

(e1,e2) | splitej as (z,y) ines end

Values v .= QO | (v1,v2)

The variables x and y are bound within es in
the expression spliteqas (x,y) ineo end.

Product Types: Static Semantics

M O :unit

ey unit ['Fe>:m
[checkeqis () inesend : ™

|_|—€12T1 |_|—622’7'2
[+ (61,62) . T1*¥TD

[(Fep:m*m> [,xm,ymoFex: T
[+ splitejas (x,y) inecend : T

Product Types: Dynamic Semantics

check () is () ineend — €

61|—>e’1

checkeq is () ineoend — check e’l is () ineoend

Product Types: Dynamic Semantics

€1I—>€/1

(e1,e2) — (6/1 »€2)

62|—>e’2

(v1,e2) — (vy ,6’2)

split (vq,vp) as (x,y) ineend — {vy,vy/xz,y}te

61|—>e’1

splitej as (x,y) inep end — split 6’1 as (x,y) ineo end

Product Types: Example

ML code:

fun ifact (0, a) a

ifact (n-1, n*a)

| ifact (n, a)

MinML code:

fun ifact (p:int*int) is
split p as (n, a) in
if n=0 then a else ifact (-(n,1), *(n, a)) f

Product Types: Example

The split construct provides a single layer of
pattern matching.

e NO nested tuples.

e NO possibility of failure.

10

Product Types: Safety

Preservation:

e By induction on evaluation.

e Using substitution lemma for split.

Progress:

e Canonical forms of product type are pairs.

e Can always split a pair of the right type.

11

Sum Types

Sum, or disjoint union, types give you choices.

e Nullary: void, with no elements.

e Binary: m1+1m5. Values are either a value of
type 7 tagged inl, or a value of type 7
tagged inr.

e n-ary: Ti+---+Tp.

e Labelled: [present:string, absent:unit].

We'll consider nullary and binary sums.

12

Sum Types: Abstract Syntax

Types T void | T1+7o

Erp's e ::= inlp +r,(e1) | inry +5,(e2) |
caseregof inl(x:71) =>eq | inr(y:7m) =>eo end

Val's v 1= inly 47, (V1) | inrp 47, (V2)

In the expression

caseregof inl(x:71) =>eq1 | inr(y:7o) =>eo end,

the variable x is bound in e; and the variable
y IS bound in es.

13

Sums: Informal Description

The type m1+m is the disjoint union of 1 and
7.

e Values of each type 71 and m are included
within it.

e Elements are tagged with inl or inr to
indicate where they came from.

Thus int+int is quite different from int!

e Elements are inl(n) and inr(n).

e Disjoint union is different from ordinary set
union!

14

Sums: Informal Description

The case construct provides non-nested, ex-
haustive pattern matching over a sum type:

case e:int+int
of inl(x:int) => +(x,1)
| inr(y:int) => -(y,1)

15

Sums: Static Semantics

[(Fep 71
[inl; +1, (e1) i 1+

[Fex:m
[= 10T) +1, (en) : T1+7

[(Feg:mTi+m> [,x1miFeyp:7T [xoimoken: T

[caseregofinl(xq1:71) =>eq | inr(xzo:7p) =>€e5 end
. T

16

Sums: Dynamic Semantics

€ — 6/
inly +r,(€) — inl; 4+, (")

€|—>€/

inrr +m, () — inr; 41, (e)

caser inl; 4+, (v) of inl(xq:71) =>eq | inr(xp:72) =>es end
— {v/z1}tes

case; inr- +,(v) of inl(xq1:71) =>eq | inr(xo:7>) =>e5 end
T1+75 1:71 1 2:TD 2
— {v/x2}es

17

Programming with Sums

Booleans are definable from sums!

® bool — unit+unit.

e true — inl(()), false = inr(()).

o if ethenejelseerfi =

caseeof inl(xq:unit) =>eq | inr(xo:unit) =>e5 end.

18

Programming with Sums

In fact any non-recursive data type is similarly
definable.

datatype T = A | B | C of int

¢ T — unit+(unit+int).

e A= inl1(()).

¢ B— inr(inl(())).

e C(n) = inr(inr(n)).

19

Programming with Sums

Pattern matching corresponds to case analysis:

case e
of A => a
| B =>50

| C(z) => ¢

20

Programming with Sums

Corresponding MinML code:

case €
of inl(w:unit) => a
| inr(x:unit+int) =>
case X
of inl(y:unit) => b

| inr(z:int) => c

21

Sums: Safety
Preservation: by induction on evaluation.

Progress: by induction on typing.

e Canonical forms of type 71+72! inl; 4+, (v1)

Of inr +.,(v2).

e Proof by induction on typing.

T he exhaustiveness of case is crucial for progress!

22

Unit and Void

The type unit has one element, (). The type
void has no elements! Consequently,

e If a function has type int—void, it must
not terminate for any argument.

e If a function has type int—unit, it might
return, but the result has to be ().

(Some languages use void when they mean
unit)

23

T he Null Pointer

Many languages have a so-called null pointer
or null object.

e [he value null in Java.

e [he cast (T x)0 in C.

The “null pointer” is used to model the ab-
sence of a value.

e Often as a default initial value for variables.

e As a ‘“base case’” for complex data struc-
tures.

24

T he Null Pointer

The null pointer is a standard source of bugs.

e Null pointer exception in Java.

e Bus error in C.

Standard languages have no ability to track
whether a pointer is null.

e Must check for null on each access.

e EXxplicit null checks do not change the type.

25

T he Null Pointer

But these problems never arise in ML! Why?

e Absence of “pointer mentality’ — value-
oriented programming.

e \Without pointers there are no null pointers!

Why are there no null pointers in ML?7

e Sum types obviate the need for them!

e SML.: datatype ’a option = NONE | SOME of

’a

26

T he Null Pointer

In ML there is a type distinction between

e A dgenuine value of type 7, and

e An optional value of type 7option.

The key to this is the presence of sum types.

e Case analysis changes the type from 7 option
to T.

e [he type system tracks whether a value is
present or not! There is no need for a NONE
check!

27

T he Null Pointer

Skeletal ML code for working with options:

fun dispatch (x : 7 option) =
case X
of NONE => eq
| SOME (x’ : 7] => €3

Within ey the variable z’ is known not to be
“null”!

28

T he Null Pointer

Skeletal Java code for working with null point-
ers:

if (x == null)

S1
else

S2

Within so the type of x is still Object and might
still be null!

29

T he Null Pointer

A harder case:

if (MyMethod(x))

S1
else

S2

The compiler cannot (in general) track that
MyMethod returning false implies that x is non-
null!

30

Summary

Products support structured data.

e Similar to struct’s in C, but with auto-
matic allocation and no “pointers’.

Sums support alternative data.

e Choice of two distinguishable alternatives.

e Case analysis propagates type change.

31

