
510: Programming Languages

Product and Sum Types

David Walker

Fall, 2002

Overview

The ML datatype mechanism combines

• sum, or disjoint union, types;

• recursive types;

• abstract types

into a single mechanism.

1

Overview

Datatype values are built using constructors.

• e.g., 3::nil.

• e.g., node(empty,1,empty)

Datatype values are decomposed using pat-

tern matching.

fun depth (node (t1, , t2)) =

1 + max(depth t1, depth t2)

2

Overview

To analyze these features of ML, we’ll start

with these types:

• Product, or tuple, types.

• Sum, or disjoint union, types.

Then we’ll add recursive and, later, abstract

types.

3

Product Types

Product, or tuple, types give you structured

data.

• Nullary products: unit. Sole value is ().

• Binary products: τ1*τ2. Values are ordered

pairs.

• n-ary products: τ1* · · · *τn. Values are or-

dered n-tuples.

• Labelled products, or records: {name:string,
salary:float}. Elements are labelled tu-

ples.

We’ll formalize binary and nullary products.

4

Product Types: Abstract Syntax

Adding product types to MinML is easy.

Types τ : := unit | τ1*τ2

Exp′s e : := () | check e1 is () in e2 end |
(e1,e2) | split e1 as (x,y) in e2 end

Values v : := () | (v1,v2)

The variables x and y are bound within e2 in

the expression split e1 as (x,y) in e2 end.

5

Product Types: Static Semantics

Γ ` () : unit

Γ ` e1 : unit Γ ` e2 : τ2
Γ ` check e1 is () in e2 end : τ2

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1,e2) : τ1*τ2

Γ ` e1 : τ1*τ2 Γ, x:τ1, y:τ2 ` e2 : τ
Γ ` split e1 as (x,y) in e2 end : τ

6

Product Types: Dynamic Semantics

check () is () in e end 7→ e

e1 7→ e′
1

check e1 is () in e2 end 7→ check e′
1 is () in e2 end

7

Product Types: Dynamic Semantics

e1 7→ e′
1

(e1,e2) 7→ (e′
1,e2)

e2 7→ e′
2

(v1,e2) 7→ (v1,e
′
2)

split (v1,v2) as (x,y) in e end 7→ {v1, v2/x, y}e

e1 7→ e′
1

split e1 as (x,y) in e2 end 7→ split e′
1 as (x,y) in e2 end

8

Product Types: Example

ML code:

fun ifact (0, a) = a

| ifact (n, a) = ifact (n-1, n*a)

MinML code:

fun ifact (p:int*int) is

split p as (n, a) in

if n=0 then a else ifact (-(n,1), *(n, a)) fi

9

Product Types: Example

The split construct provides a single layer of

pattern matching.

• No nested tuples.

• No possibility of failure.

10

Product Types: Safety

Preservation:

• By induction on evaluation.

• Using substitution lemma for split.

Progress:

• Canonical forms of product type are pairs.

• Can always split a pair of the right type.

11

Sum Types

Sum, or disjoint union, types give you choices.

• Nullary: void, with no elements.

• Binary: τ1+τ2. Values are either a value of

type τ1 tagged inl, or a value of type τ2
tagged inr.

• n-ary: τ1+ · · · +τn.

• Labelled: [present:string, absent:unit].

We’ll consider nullary and binary sums.

12

Sum Types: Abstract Syntax

Types τ : := void | τ1+τ2

Exp′s e : := inlτ1+τ2(e1) | inrτ1+τ2(e2) |
caseτ e0 of inl(x:τ1) => e1 | inr(y:τ2) => e2 end

Val ′s v : := inlτ1+τ2(v1) | inrτ1+τ2(v2)

In the expression

caseτ e0 of inl(x:τ1) => e1 | inr(y:τ2) => e2 end,

the variable x is bound in e1 and the variable

y is bound in e2.

13

Sums: Informal Description

The type τ1+τ2 is the disjoint union of τ1 and

τ2.

• Values of each type τ1 and τ2 are included

within it.

• Elements are tagged with inl or inr to

indicate where they came from.

Thus int+int is quite different from int!

• Elements are inl(n) and inr(n).

• Disjoint union is different from ordinary set

union!

14

Sums: Informal Description

The case construct provides non-nested, ex-

haustive pattern matching over a sum type:

case e:int+int

of inl(x:int) => +(x,1)

| inr(y:int) => -(y,1)

15

Sums: Static Semantics

Γ ` e1 : τ1
Γ ` inlτ1+τ2(e1) : τ1+τ2

Γ ` e2 : τ2
Γ ` inrτ1+τ2(e2) : τ1+τ2

Γ ` e0 : τ1+τ2 Γ, x1:τ1 ` e1 : τ Γ, x2:τ2 ` e2 : τ

Γ ` caseτ e0 of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 end
: τ

16

Sums: Dynamic Semantics

e 7→ e′
inlτ1+τ2(e) 7→ inlτ1+τ2(e

′)

e 7→ e′
inrτ1+τ2(e) 7→ inrτ1+τ2(e

′)

caseτ inlτ1+τ2(v) of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 end
7→ {v/x1}e1

caseτ inrτ1+τ2(v) of inl(x1:τ1) => e1 | inr(x2:τ2) => e2 end
7→ {v/x2}e2

17

Programming with Sums

Booleans are definable from sums!

• bool = unit+unit.

• true = inl(()), false = inr(()).

• if e then e1 else e2 fi =

case e of inl(x1:unit) => e1 | inr(x2:unit) => e2 end.

18

Programming with Sums

In fact any non-recursive data type is similarly

definable.

datatype T = A | B | C of int

• T = unit+(unit+int).

• A = inl(()).

• B = inr(inl(())).

• C(n) = inr(inr(n)).

19

Programming with Sums

Pattern matching corresponds to case analysis:

case e

of A => a

| B => b

| C(z) => c

20

Programming with Sums

Corresponding MinML code:

case e

of inl(w:unit) => a

| inr(x:unit+int) =>

case x

of inl(y:unit) => b

| inr(z:int) => c

21

Sums: Safety

Preservation: by induction on evaluation.

Progress: by induction on typing.

• Canonical forms of type τ1+τ2: inlτ1+τ2(v1)

or inrτ1+τ2(v2).

• Proof by induction on typing.

The exhaustiveness of case is crucial for progress!

22

Unit and Void

The type unit has one element, (). The type

void has no elements! Consequently,

• If a function has type int→void, it must

not terminate for any argument.

• If a function has type int→unit, it might

return, but the result has to be ().

(Some languages use void when they mean

unit)

23

The Null Pointer

Many languages have a so-called null pointer

or null object.

• The value null in Java.

• The cast (T *)0 in C.

The “null pointer” is used to model the ab-

sence of a value.

• Often as a default initial value for variables.

• As a “base case” for complex data struc-

tures.

24

The Null Pointer

The null pointer is a standard source of bugs.

• Null pointer exception in Java.

• Bus error in C.

Standard languages have no ability to track

whether a pointer is null.

• Must check for null on each access.

• Explicit null checks do not change the type.

25

The Null Pointer

But these problems never arise in ML! Why?

• Absence of “pointer mentality” — value-

oriented programming.

• Without pointers there are no null pointers!

Why are there no null pointers in ML?

• Sum types obviate the need for them!

• SML: datatype ’a option = NONE | SOME of

’a

26

The Null Pointer

In ML there is a type distinction between

• A genuine value of type τ , and

• An optional value of type τ option.

The key to this is the presence of sum types.

• Case analysis changes the type from τ option

to τ .

• The type system tracks whether a value is

present or not! There is no need for a NONE

check!

27

The Null Pointer

Skeletal ML code for working with options:

fun dispatch (x : τ option) =

case x

of NONE => e0
| SOME (x’ : τ) => e1

Within e1 the variable x′ is known not to be

“null”!

28

The Null Pointer

Skeletal Java code for working with null point-

ers:

if (x == null)

s1
else

s2

Within s2 the type of x is still Object and might

still be null!

29

The Null Pointer

A harder case:

if (MyMethod(x))

s1
else

s2

The compiler cannot (in general) track that

MyMethod returning false implies that x is non-

null!

30

Summary

Products support structured data.

• Similar to struct’s in C, but with auto-

matic allocation and no “pointers”.

Sums support alternative data.

• Choice of two distinguishable alternatives.

• Case analysis propagates type change.

31

