
Programming Languages

MinML: A MINiMaL Functional

Language

Type Safety

David Walker



Type Safety

Java and ML are type safe, or strongly typed,

languages.

C and C++ are often described as weakly

typed languages.

What does this mean?

1



Type Safety

Informally, a type-safe language is one for which

• There is a clearly specified notion of type

correctness.

• Type correct programs are free of “run-

time type errors”.

But this begs the question!

2



Type Safety

What is a run-time type error?

• Bus error?

• Division by zero? Arithmetic overflow?

• Array bounds check?

• Uncaught exception Match?

3



Type Safety

Type safety is a matter of coherence between

the static and dynamic semantics.

• The static semantics makes predictions

about the execution behavior.

• The dynamic semantics must comply with

those predictions.

4



Type Safety

For example, if the type system tracks sizes

of arrays, then out-of-bounds subscript is a

run-time type error.

• The type system ensures that access is

within allowable limits.

• If the run-time model exceeds these bounds,

you have a run-time type error.

Similarly, if the type system tracks value ranges,

then division by zero or arithmetic overflow is

a run-time type error.

5



Type Safety

Demonstrating that a program is well-typed

means proving a theorem about it’s behavior.

• A type checker is therefore a theorem prover.

• Non-computability theorems limit the strength

of theorems that a mechanical type checker

can prove.

6



Type Safety

Fundamentally there is a tension between

• the expressiveness of the type system, and

• the difficulty of proving that a program is

well-typed.

Therein lies the art of type system design.

7



Type Safety

Two common misconceptions:

• The expressiveness of type systems is in-

herently limited to decidable properties.

• Anything that a type checker can do can

also be done at run-time (perhaps at some

small cost).

8



Type Safety

These are both false!

• There is no inherent limit to the expres-

siveness of a type system.

• Type systems can capture undecidable prop-

erties such as “this function will terminate”.

We will develop these ideas further as we pro-

ceed in the course.

9



Formalization of Type Safety

The coherence of the static and dynamic se-

mantics is neatly summarized by two related

properties:

1. Preservation. Well-typed programs do not

“go off into the weeds”. A well-typed pro-

gram remains well-typed during execution.

2. Progress. Well-typed programs do not

“get stuck”. If an expression is well-typed,

then either it is a value or there is a well-

defined next instruction.

10



Formalization of Type Safety

More precisely, type safety is the conjunction

of two properties:

1. Preservation. If e : τ , and e 7→ e′, then

e′ : τ .

2. Progress. If e : τ , then either e is a value,

or there exists e′ such that e 7→ e′.

Consequently, if e : τ and e 7→∗ v, then v : τ .

11



Formalization of Type Safety

Moreover, the type of a (closed) value deter-

mines its form. If v : τ , then

• If τ = int, then v = n for some n.

• If τ = bool, then v = true or v = false.

• If τ = τ1→τ2, then v = fun f (x:τ1):τ2 = e

for some f , x, and e.

Thus if e : int and e 7→∗ v, then v = n for some

n. In words: expressions of type int evaluate

to numbers.

12



Proof of Preservation

Theorem 1 (Preservation)

If e : τ and e 7→ e′, then e′ : τ .

Proof: The proof proceeds by ? This means

1. We must prove it outright for axioms (rules

with no premises).

2. For each rule, we may assume the theorem

for the premises, and show it is true for the

conclusion.

�

13



Proof of Preservation for Instruction

Steps

The primitive operations are straightforward:

We have e = +(n1, n2), τ = int, and e′ = n1 +

n2.

Clearly e′ : int, as required.

The other primitive operations are handled sim-

ilarly.

14



Proof of Preservation for Instruction

Steps

There are two cases for conditionals:

1. We have e = ifτ true then e1 else e2 fi and

e′ = e1.

Since e : τ , we have e1 : τ , by inversion.

2. We have e = ifτ false then e1 else e2 fi and

e′ = e2.

Since e : τ , we have e2 : τ , by inversion.

15



Proof of Preservation for Instruction

Steps

Application is a bit more complex. We require

both the inversion and the substitution lem-

mas.

We have e = apply(v1, v2),

where v1 = fun f (x:τ2):τ = e2,

and e′ = {v1, v2/f, x}e2.

By inverting the typing of e, we have

v1 : τ2→τ and v2 : τ2.

By inverting the typing of v1, we have [f :τ2→τ ][x:τ2] `
e2 : τ .

By substitution we have {v1, v2/f, x}e2 : τ , as

required.

16



Proof of Preservation for Search Rules

We have e = +(e1, e2), e′ = +(e′
1, e2), and e1 7→

e′
1.

By inversion e1 : int, so that by induction e′
1 :

int, and hence e′ : int, as required.

17



Proof of Preservation for Search Rules

We have e = +(v1, e2), e′ = +(v1, e′
2), and e2 7→

e′
2.

By inversion e2 : int, so that by induction e′
2 :

int, and hence e′ : int, as required.

18



Proof of Preservation for Search Rules

We have e = ifτ e1 then e2 else e3 fi and e′ =

ifτ e′
1 then e2 else e3 fi.

By inversion we have that e1 : bool, e2 : τ and

e3 : τ .

By inductive hypothesis e′
1 : bool, and hence

e′ : τ .

19



Proof of Preservation for Search Rules

There are two cases for application.

First, we have e = apply(e1, e2)

and e′ = apply(e′
1, e2).

By inversion e1 : τ2→τ and e2 : τ2, for some

type τ2.

By induction e′
1 : τ2→τ , and hence e′ : τ .

20



Proof of Preservation for Search Rules

Second, we have e = apply(v1, e2) and e′ =

apply(v1, e′
2).

By inversion, v1 : τ2→τ and e2 : τ2, for some

type τ2.

By induction e′
2 : τ2, and hence e′ : τ .

21



Proof of Preservation

This completes the proof. How might it have

failed?

Only if some instruction is mis-defined. For

example, if we had defined

=(m, n) 7→
{

1 if m = n
0 if m 6= n

Then preservation would fail.

In other words, preservation says that the steps

of evaluation are well-behaved.

22



Proof of Preservation

Notice that if an instruction is undefined, this

does not disturb preservation!

For example, if we omitted the instruction for

=(m, n), the proof would still go through!

In other words, preservation alone is not

enough to characterize safety.

23



Canonical Forms Lemma

The type system predicts the forms of values:

Lemma 2 (Canonical Forms)

Suppose that v : τ and v value.

1. If τ = bool, then either v = true or v =

false.

2. If τ = int, then v = n for some n.

3. If τ = τ1→τ2, then v = fun f (x:τ1):τ2 = e

for some f , x, and e.

24



Proof of Canonical Forms Lemma

The proof is by induction on typing. For

example, for v : bool,

• v cannot be a numeral, because int 6= bool.

• v cannot be a variable, because it is closed.

• v can be a boolean constant, as specified.

• v cannot be an application of a primitive,

nor a function, nor an application of a func-

tion.

25



Proof of Progress

Theorem 3 (Progress)

If e : τ , then either e is a value, or there exists

e′ such that e 7→ e′.

Proof: The proof is by? How do we proceed?

�

26



Proof of Progress

The expression cannot be a variable, because

it is closed.

For numerals, boolean constants, or functions,

the result is immediate because they are val-

ues.

Consider the rule for typing addition expres-

sions. We have e = +(e1, e2) and τ = int, with

e1 : int and e2 : int.

By induction we have either e1 is a value, or

there exists e′
1 such that e1 7→ e′

1 for some

expression e′
1.

We consider these two cases in turn.

27



Proof of Progress

If e1 7→ e′
1, then e 7→ e′, where e′ = +(e′

1, e2),

which completes this case.

If e1 is a value, then we note that by the canon-

ical forms lemma e1 = n1 for some n1, and we

consider e2.

By induction either e2 is a value, or e2 7→ e′
2 for

some expression e′
2.

If e2 is a value, then by the canonical forms

lemma e2 = n2 for some n2, and we note that

e 7→ e′, where e′ = n1 + n2.

If e2 is not a value, then e 7→ e′, where e′ =

+(v1, e′
2).

28



Proof of Progress

Suppose that e = apply(e1, e2), with e1 : τ2→τ

and e2 : τ2.

By the first inductive hypothesis, either e1 is a

value, or there exists e′
1 such that e1 7→ e′

1.

If e1 is not a value, then e 7→ apply(e′
1, e2)

by the rule for evaluating applications, as re-

quired.

29



Proof of Progress

By the second inductive hypothesis, either e2
is a value, or there exists e′

2 such that e2 7→ e′
2.

If e2 is not a value, then e 7→ e′, where e′ =

apply(e1, e′
2), as required.

Finally, if both e1 and e2 are values, then by

the Canonical Forms Lemma,

e1 = fun f (x:τ2):τ = e′′

and e 7→ e′, where e′ = {e1, e2/f, x}e′′, by the

rule for executing applications.

30



Proof of Progress

The other cases are handled similarly. How

could the proof have failed?

1. Some instruction step was omitted. If there

were no instructions for =(n1, n2), then progress

would fail.

2. Some search rule was omitted. If there

were no rule for, say, =(e1, e2), where e1 is

not a value, then we cannot make progress.

In other words, progress implies that we cannot

find ourselves in an embarassing situation!

31



Extending the Language

We deliberately omitted division from the lan-

guage. Suppose we add div as a primitive

operation and define the following evaluation

rules for it:

(n2 6= 0)
div(n1, n2) 7→ n1 ÷ n2

e1 7→ e′
1

div(e1, e2) 7→ div(e′
1, e2)

e1 value e2 7→ e′
2

div(e1, e2) 7→ div(e1, e′
2)

32



Extending the Language

Suppose the static semantics gives the follow-

ing typing to div:

Γ ` e1 : int Γ ` e2 : int
Γ ` div(e1, e2)

Is the language still safe?

• Preservation continues to hold: new in-

struction preserves type.

• Progress fails: div(10,0) 67→, yet has type

int.

33



Extending the Language

How can we recover safety?

1. Strengthen the type system to rule out the

offending case.

2. Change the dynamic semantics to avoid

getting “stuck” when the denominator is

zero.

34



Extending the Type System

A natural idea: add a type nzint of non-zero

integers. Revise the typing rule for division to:

Γ ` e1 : int Γ ` e2 : nzint
Γ ` div(e1, e2) : int

But how do we “create” expressions of type

nzint?

• This type does not have good closure prop-

erties, e.g.is not closed under subtraction.

• It is undecidable in general whether e : int

evaluates to a non-zero integer.

35



Modifying the Dynamic Semantics

Idea: introduce a well-defined error transitions

corresponding to checked errors such as zero

denominator or array index out of bounds.

• Undefined transitions correspond to “core

dumps”. Eliminate them by giving them a

well-defined meaning, namely error.

• Revise statement of safety to account for

errors. A program has an answer that is

either a value or an error.

36



Adding Errors

The dynamic semantics must be modified in

two ways:

• Primitive operations must yield an error in

an otherwise undefined state.

• Search rules must propagate errors once

they arise.

37



Adding Errors

For example, we add an error transition for

zero divisor:

div(m,0) 7→ error

Then we must propagate errors upwards:

div(error, e) 7→ error

v value
div(v, error) 7→ error

and so on for the other non-value expression

forms.

38



Adding Errors

Revise preservation and progress:

• Preservation: if e : τ and e 7→ e′, where

e′ 6= error, then e′ : τ .

• Progress: if e : τ , then either e is a value

or e is error or there exists e′ such that

e 7→ e′.

The proofs are largely the same. There must

be “enough” propagation rules for progress to

hold.

39



Summary

• Type safety expresses the coherence of

the static and dynamic semantics.

• Coherence is elegantly expressed as the con-

junction of preservation and progress.

40



Summary

Checked errors ensure that behavior is well-

defined, even in the presence of undefined op-

erations.

• Explicitly circumscribe error transitions.

• Explicitly define which states lead to an

error.

41


