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1 Introduction

In this document we will describe a simple language for describing pictures. We will describe
our language by providing a precise denotational semantics. However, we will begin by
introducing some key concepts in an informal way.



1.1 Concepts

Point - A location on the plane of real numbers (R?)

Shape - A set of points.

Color - A color is a mixture of the primary colors red, , and blue.
Texture - An assignment of a color to every point on the plane.

Layer - A layer is a partial assignment of colors to points on the plane. Layers are built by
combining a shape with a texture. A point is assigned a color if the point is a member
of a particular shape. The color the point has is derived from the texture.

Picture - A picture is an ordered collection of layers that results in a partial assignment of
colors to points. If two layers in a picture both assign a color to a point we choose the
color of the top most layer.

Image - An assignment of a colors to every point on the plane. An image can be created
from a picture by assigning a default value to all points in a picture that do not have
a value assigned.

Notice none of our definitions refer to pixles or resolutions. We wish to describe the esence

of a picture without specifying how one would actually display an image on a device with a
limited resolution.

2 A Language for Describing Pictures

2.1 Syntax
real numbers T,y = ...
scale factors a,b = x wherez # 0
points p == (x,y)
shape s = everything | nothing
| union(sy, s9) | intersect(sy, so) | difference(sy, s2)
| ellipse(p, a,b) | halfplane(pg, p1)
| translate(p, s) | scaleXY(a,b, s)
color ¢ == red | green | blue | ...
texture t = constant(c) |
picture pict == layer(s,t) | pict; > picts
image image = (pict,c)



2.2 Semantics

S[everything] = R?
S[nothing] = {}
S[union(sy, s2)] = {p|p € S[si] vV pe S[s2]}
Slintersect(sy,s2)] = {p|peS[si] A pe S[s2]}
S|difference(sy,s2)] = {p|p e Slsi] A p & S[s2]}
S[ellipse((zo,0),a,0)] = {(2,y) | (z —x0)*/a” + (y — yo)*/b" < 1}
S[halfplane((zo, yo), (x1,92))] = {(z,9) [ (v = yo)(z1 — z0) = (= — 20) (Y1 — %0)}
S|[translate((xo, y0),s)] = {(z,v) |
s, ys. t=xs+x90 N Yy=9ys+vyo N (xs5,9s) € S[s]}
S[scaleXY(a,b,s)] = {(z,v) |

Elxs,ysx:a:cs A y:bys A (xmys) GS[[S]]}

I

7 [constant(co)]

{(p,c) | ¢ = co}

Pllayer(s,t)]
Plpict, > picty]

{(p,c) I peS[s] A (p,c) € T[]}
{(p,e) | (p,c) € Plpicti]
V (=3 (p, ) € Plpict1]) N (p,c) € Plpicta])}

e 11

I

I[(pict, c)] {(p,co) | (p. ) € Plpict]

)
vV (=(3.(p, ) € Plpict1]) N c=co)}

3 Theorems About Shapes

3.1 Some Well Known Shapes
3.1.1 The Unit Circle

The unit circle centered at the origin is defined by the set

{(z,y) | 2* +y° <1}

It is easy to show that S[ellipse((0,0),1,1)] is the unit circle

{(z,y) | (x—0)?/1° + (y — 0)*/1% < 1}
{(z,y) | 2* +y* <1}

S|ellipse((0,0),1,1)]

[rae



3.1.2 A Semi-Circle

A semi-circle lying in the non-negative y-quadrant centered at the origin is defined by the
set
{(zy) |2 +y* <1 A y>0}

We will show that
S|intersect(halfplane((0,0), (1,0)), ellipse((0,0),1,1))]
is such a semi-circle. From our defintion we have

S|[intersect(halfplane((0,0), (1,0)), ellipse((0,0),1,1))] =
{p | p € S[halfplane((0,0),(1,0))] A p € S|ellipse((0,0),1,1))]}

from our previous result about the unit circle we know.

{p | p € S[halfplane((0,0),(1,0))] A p € S[ellipse((0,0),1,1)]} =
{p | p € S[halfplane((0,0),(1,0))] A p€{(z.y)] 2" +y* < 1}}

Again from our defintion we have
plpe{(lzy) | (y—0(1-0) > (z—-x)0-0} A pe{(z,y)|2*+y* <1}}
by a simple change of variables we have
{(z,9) | (@,y) € {(z.9) [ (4 = 0)(1 = 0) = (x = 0)(0 =)} A (2,y) € {(z,y) [ 2* +y* < 1}}
which is the same as
{(@,y) [ (y=0)(1-0) > (z-0)(0-0) A 2" +y* <1}

Simplifying we have
{z,y) [y=0 A 2 +y* <1}

which is equivalent to the semi-circle

{(z,y) | 2> +y* <1 A y>0}

3.1.3 The Unit Square

The square centered at the origin with side length 1 is described by the set
{(z,y)] —05<2<05 A —05<y<0.5}

The meaning of the following shape expression describes such a square

insertsect(halfplane((—0.5, —0.5), (0.5, —0.5)),
insertsect(halfplane((0.5, —0.5), (0.5, 0.5)),
insertsect(halfplane((0.5,0.5), (—0.5,0.5)), halfplane((—0.5,0.5), (—0.5, —0.5)))))
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Laboriously expanding the above expression to its meaning gives us

{(z,9) |
(y — (=0.5))(0.5 = (—0.5)) > (z — (=0.5))((=0.5) — (—0.5)) A
(y — (05»®5—05)20v—0@m5—(— 5) A
(y — 0. x(05y—0®z(x—omm5—o5)A
(y —0.5)((=0.5) = (=0.5)) > (z — (=0.5))((~0.5) — 0.5)}

Simplifying we obtain
{(z,y)| y+05>0 A
0>xz—05 A
—y+05>0 A
0>—x—0.5}

Rearranging the above we have
{(z,9) |0>2—-05 AN 0>—-2—-05 A y+05>0 A —y+0.5>0}
Distributing terms we have
{(z,y) 105> AN x>-05 A y>-05 A 05>y}
We may rewrite the above as
{(z,y) |2 <05 AN =05<z A —05<y A y<0.5}
which is logically equivalent to

{(z,y)| —05<2x<05 A —05<y<0.5}

3.2 Theorems About Scaling and Translation

It is easy to show the following equation hold

S|[scaleXY(a, b, nothing)] = nothing

S|translate(p, nothing)] = nothing
S[scaleXY (a, b, everything)] = everything
S|[translate(p, everything)] = everything

The first two are trivially true while the second two rely on the fact that R is closed under
addition and multiplication. The following equations also hold



S[scaleXY(a, b, union(s, s2))] = S[union(scaleXY(a,b, sq),scaleXY(a,b, s2))]
S|[scaleXY (a, b, intersect(sy, s2))] = Slintersect(scaleXY(a,b, s1),scaleXY (a, b, s9))]
S[scaleXY (a, b, difference(sy, s2))] = S|difference(scaleXY(a,b, s1),scaleXY (a,b, s2))]
S|[translate(p, union(sy, s2))] = S[union(translate(p, s1), translate(p, s2))]
S[translate(p, intersect(sy, s2))] = Slintersect(translate(p, s1), translate(p, sq))]

S[translate(a, b, difference(sy, s2))] = S[difference(translate(p, s1), translate(p, s2))]

We can also so the following equations are true

S[scaleXY (ag, by, scaleXY (ai, by, s))]
S|translate((xo, yo), translate((x1, 1), s))]
S[scaleXY (a, b, translate((xo, yo), $))]

S[[scaIeXY(agal, bobl, S)]]
S[translate((zo + z1, %0 + y1), 8)]
S|translate((azo, byo), scaleXY (a, b, s))]

111

I

Finally we have the following set of equations

S[scaleXY (a, b, ellipse((xq, yo), ag, bo)

1%

| S[ellipse((axq, byo), (aag, bby))]

| S|ellipse(po + p1,a,b)]

| = S[halfplane((axo, byo), (ax1, by1))]
] S[halfplane(p1 + po, p2 + po)]

1

)

S|translate(py, ellipse(py, a, b))
S|scaleXY (a, b, halfplane((zo, vo), (x1,%1)))
S[translate(py, halfplane(p, p2))

12

All the previous equations allow us to simplify shapes so that they are free of any scale or
translation operations.

3.2.1 Scaling Distributes Over Union
To see why the equation
S|[scaleXY (a, b, union(sy, $2))] = S[union(scaleXY (a, b, s1), scaleXY (a, b, s2))]

holds we can expand both sides to obtain the equation

>~

{(xuy) | dxg,ys, © =axs N y=0bys A (xsays) < Sﬂunion(sl752)ﬂ}
{(z,y) | (z,y) € scaleXY(a,b,s1) V (z,y) € scaleXY(a,b, s2)}

We can expand the definitions again to obtain

{(z,y) | Fs,ys x = azs N y=bys A
{((fﬁs,)y's) €{(z,y) | (x,y) € S[s1] V (z,y) € S[s2]}} =
x’y
(7,9) € {(z,9) | Frs,ys v = axs A y=bys A (z5,ys) € S[s1]} Vv
(x,y) € {(z,y) | Frs,ys x = axs N y=0bys N (xs,ys) € S[s2]}}
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Simplifying both sides we have

{($7y) | 3:L‘saysx:al‘s A y:bys A (xsays) ES[[S1H V (xs,ys) ES[[SQH} =
{($,y) ’ Elxsaysx:axs A y:bys A (l's,ys) ES[[Sl]] V

Elxmys r=ars N\ y= bys A (xsvys) € S[[SQ]]}
The r.h.s. can be shown logically equivalent to

{(.I7y) | E]Isuys r=ars N Y= bys A (xmys) S S[[Sl]] \ xmys) S S[[S2]]} =
{(%y) | 3%7% r=ars N\ y= bys A (x57y5) S Sﬂsl]]

r=ars N\ y= bys A (xsays) € S[[SQ]]}

(
v

The r.h.s. can again be simplified to

xsays) € S[[SZH} =

{(z,y) | Frs,ys x =axy A y=bys N (25ys) € S[s1] V (
]] \ (x&ys) GS[[SQ]]}

{(l’,y) ’ Elx&ys T = axs A y = bys A (xsvys) € 8[[31

which is trivially true.

3.2.2 Scaling Distributes Over Intersection

The by similar reasoning the following equation
S|[scaleXY (a, b, union(sy, $2))] = S[union(scaleXY (a, b, s1), scaleXY (a, b, s2))]
holds if

{(z,y) | Fzsys x =axs N y=0bys N (2s,ys) € S[s1] N (z5,9s) € S[s2]} =
]

(
{(37,3/) ’ Elxsaysx:axs A y:bys A ('IS’yS) 68[[51 A
g, ys t=axs N y=0bys N (xs,ys) € S[s2]}

The r.h.s. is logically equivalent to

{(l’7y) | 3xmys r=ars N\ y= bys A (mwys) S S[[Sl]] A (1757:%) S S[[SQ]]} =
{(w,y) | Elms,ys,x’s,y;x:axs A y:bys A (Is,ys) ES[[Sl]] A
r=ar; Ny=>by, N (z5,y,) € S[sa]}

Since z = axs and x = az, we must have z, = x4 similarly we must have y; = y.. From
these observations we can simplify the r.h.s again to obtain the trivially true statement

{(z,y) | Fzs,ys x =azxs N y=">bys N (xs,ys) € S[s1] N (xs,ys) € S[s2]} =
{(z,y) | Fxs,ys x =axs N y=bys N (z5,ys) € S[s1] N (ws,ys) € S[s2]}

3.2.3 Scaling Distributes Over Difference

By a similar argument to our last we can show

S[scaleXY (a, b, difference(sy, s2))] = S[difference(scaleXY (a, b, s1),scaleXY (a, b, s2))]



3.2.4 Translation Distributes Over All Set Operations

We can show translation distributes over the set operations in a similar way.

3.2.5 Scale and Translation Compositions
The following equation holds

S|[scaleXY (ag, by, scaleXY (ay, by, s))] = S[scaleXY (agai, boby, s)]
because by expanding our definitions we have

{(z,y) | Fzs,ys © = apzs N y="Dboys N (zs,ys) € S[scaleXY (ay,by,s)]} =
{(z,y) | Fzs,ys © = apar1xs N y=bobrys A (xs,ys) € S[s]}

Expanding once more gives us

{(‘T7y) | Elxsvys T =aprs N Yy = bOys A
(s, ys) € {(2,9) | 32,95 = a1y N y=Dbiys A (z4,9s) € S[s]}} =
{(l’,y) ‘ E|$5,y5 T = apaxs N\ Y= bOblys A (ms,ys) S SHSH}

We can simplify the L.h.s. resulting in

{(z,y) | s, ys, 2%, Yt @ = aors Ay = boys A
Ts = alxls A Ys = bly; A (x/svy;) € S[[S]]} =
{(z,y) | Fzs, ys v = aparzs A y=bobiys N (xs,ys) € S[s]}

Since we have xs = a2, and ys; = b1y, we can simplify the Lh.s. to

{(z,y) | 32, ys @ = aparwy, Ay =bobry, A (24, y5) € S[s]} =
{(a:,y) | dxs,ys = aparrs A Yy = bobiys N ($S>y8) € S[[SH}

which is trivially true.
The equation

S[translate((xq, yo), translate((z1,v1), s))] = S[translate((zo + z1, Y0 + ¥1), S)]

is true via a similar argument.
The equation

S[scaleXY (a, b, translate((xo, yo), s))] = S[translate((axo, byo), scaleXY (a, b, s))]
is justified since by expanding definitions we obtain the equation

{(@,y) | 3vs,ys v = axs N y=0bys N (25,ys) € S[translate((zo, yo), s)]} =
{<x>y) | 3.235, Ys. T = Ts + axg A Yy=1ys+ byO A (xsays) € SCB'GXY(CL, ba 8)}



By expanding definitions once more we obtain the equation

{(z,y) | Fzs,ys x = axs N y="bys A

(zs,ys) € {(z,y) | Frs,ys. x =25 +T0 A y=ys+yo A (Ts,ys) € S[s]}} =
{(z,y) | Fzs,ys. t =5+ azo N y=1ys+byy A

(3357?/5) € {($7y) | Elxsays rT=ars N\ y= bys A <$57ys> € S[[S]]}}

Simplifying we obtain

{(z,y) | g, ys, 05,y v =avy N y=Dbys N zs3=2,+20 N ys =y, +1yo A
(x4, y.) € S[s]} =
{(z,y) | Irs,ys, 2%, ¥t x = x5+ axg N y=ys+byo N x5 =azl N ys =by., A

(25, y;) € S[sl}

In the L.h.s. we have z3 = 2/, + o and ys = ¥, + yo. In the r.h.s. we have xy = ax’, and
ys = by.. Using both facts we can simplify the equation to

{(z,y) | I,y v = alz, +20) A y=>0by,+y) A (2),y.) € S[s
{(z,y) | 2,y v = axl, +axg N y=0by, +byy N (2},y.) € S|

I =
sl

Collecting like terms in the r.h.s. leads us to the trivially true equation

wYs) € Slsl} =
(75, y;) € S[sl}

{(z,y) | 32§, yg. @ = alwl + o) Ay =blys +v0) A (2
)

(
{(z,y) | I, v’ © = a(z, + x9) A y =b(y. +vo) N

3.2.6 Scaling an Ellipse
We will show the following equation holds

S[scaleXY (a, b, ellipse((xo, o), ao, bo))] = S[ellipse((axo, byo), (aag, bby))]
First we expand definitions to obtain

{(l’,y) | HISJyS T = axsy A Yy = bys A (xsays) € S[[e”ipse((any0)7a07b0)]]} =
{(z,y) | (x — axo)®/(aao)* + (y — byo)?/ (bbe)* < 1}

Expanding definitions in the L.h.s. again gives us

{(xay> ’ dzs,ys v =axs N y=0bys A
(25, ys) € {(2,9) | (x —20)%/ag + (y —yo)?/b5 < 1}} =
{(z,y) | (x = axo)?/(aao)® + (y — byo)*/(bby)* < 1}

Simplifying leaves us with

{<x>y) | E|x$;ys T = axg A Yy = bys A (xs - xO)Q/a?) + ( yO)Q/b% S 1} =
{(z,y) | (z — axo)®/(aao)* + (y — byo)?/ (bbo)* < 1}



On the L.h.s we have © = axs so that z;, = z/a likewise for y = by, we have ys = y/b.
Simplifying we have

{(z.y) | (¥/a—z0)*/ag + (y/b—yo)?/bF <1} =
{(z,9) | (x = ax0)?/(aao)* + (y — byo)*/(bbo)* < 1}
Factoring terms on the l.h.s we have

{(z,y) | (1/a)(z — axo))*/ag + ((1/b)(y — byo))
{(z,y) | (x — ax)?/(aao)* + (y — byo)*/ (bbo)* < 1}

which is the same as

{(z,y) | (1/a)*(z — axo)*(1/ag) + (1/0)*(y — byo)*(1/b5) < 1} =
{(z,y) | (z — az0)?/(aao)® + (y — byo)*/ (bbo)* < 1}

Finally we have

{(2.9) | (& — axo)?/(aa0)?) + (y — byo)?/(bbo)? < 1} =
{(2.) | (x — azo)?/(aao)? + (y — byo)?/ (bbo)? < 1}

3.2.7 Translation of an Ellipse
We will show the following equation holds
S[translate((xo, yo), ellipse((z1,41), a,b))] = S[ellipse((xo + x1, Yo + y1), a, b)]

By expanding definitions we have

~

{(z,y) | Fzs,ys. =25+ 20 N Yy=9ys+vy0 N (xs5,ys) € S[ellipse((x1,11),a,b)]}
{(z,9) | (& = (w0 +21))*/a® + (y — (yo +11))?/0* < 1}

Expanding definitions in the L.h.s agian we have

{(x7y> ’ Elxsays- T=xs+xo N Y=yYs+ty N
(@, 9s) € {(2,9) | (v — 21)?/a® + (y —y1)?/0? < 1}} =
{(z.9) | (x— (20 +21))%/a® + (y — (yo +11))?/0° < 1}
Simplifying we have
{(l‘,y) | Elxsays' T =Tg +x0 A Y=1Ys + Yo A (xs - '1)1)2/(12 + (ys - y1>2/62 S 1} =
{(z.y) | (x = (20 +21))%/a® + (y — (yo +11))*/0* < 1}

In the I.h.s we know that x = x4+ x( so that zs, = x — x¢ like wise we know have y, = vy — o,
therefore we can simplify the L.h.s as

() | (@ — 20) — 20)/a? + (g — yo) — y)2/B2 < 1} =
{(e9) | (@ — (o +21)2/a® + (y — (o + 92))2/0 < 1}

Rearranging the 1.h.s. we obtain the trivial equality

{(2, ) | (x — (w0 + 21))%/a® + (y — (yo +11))?/b* < 1} =
{(z,9) | (& = (w0 +21))*/a® + (y — (yo +11))?/0* < 1}
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3.2.8 Scaling a Halfplane
3.2.9 Translation of a Halfplane
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