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1 Introduction

In this document we will describe a simple language for describing pictures. We will describe
our language by providing a precise denotational semantics. However, we will begin by
introducing some key concepts in an informal way.
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1.1 Concepts

Point - A location on the plane of real numbers (R2)

Shape - A set of points.

Color - A color is a mixture of the primary colors red, green, and blue.

Texture - An assignment of a color to every point on the plane.

Layer - A layer is a partial assignment of colors to points on the plane. Layers are built by
combining a shape with a texture. A point is assigned a color if the point is a member
of a particular shape. The color the point has is derived from the texture.

Picture - A picture is an ordered collection of layers that results in a partial assignment of
colors to points. If two layers in a picture both assign a color to a point we choose the
color of the top most layer.

Image - An assignment of a colors to every point on the plane. An image can be created
from a picture by assigning a default value to all points in a picture that do not have
a value assigned.

Notice none of our definitions refer to pixles or resolutions. We wish to describe the esence
of a picture without specifying how one would actually display an image on a device with a
limited resolution.

2 A Language for Describing Pictures

2.1 Syntax

real numbers x, y ::= . . .

scale factors a, b ::= x where x 6= 0

points p ::= (x, y)

shape s ::= everything | nothing
| union(s1, s2) | intersect(s1, s2) | difference(s1, s2)
| ellipse(p, a, b) | halfplane(p0, p1)
| translate(p, s) | scaleXY(a, b, s)

color c ::= red | green | blue | ...

texture t ::= constant(c) | . . .

picture pict ::= layer(s, t) | pict1 . pict2

image image ::= (pict, c)
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2.2 Semantics

S[[everything]] ∼= R2

S[[nothing]] ∼= {}
S[[union(s1, s2)]] ∼= {p | p ∈ S[[s1]] ∨ p ∈ S[[s2]]}

S[[intersect(s1, s2)]] ∼= {p | p ∈ S[[s1]] ∧ p ∈ S[[s2]]}
S[[difference(s1, s2)]] ∼= {p | p ∈ S[[s1]] ∧ p 6∈ S[[s2]]}

S[[ellipse((x0, y0), a, b)]] ∼= {(x, y) | (x− x0)
2/a2 + (y − y0)

2/b2 ≤ 1}
S[[halfplane((x0, y0), (x1, y1))]] ∼= {(x, y) | (y − y0)(x1 − x0) ≥ (x− x0)(y1 − y0)}

S[[translate((x0, y0), s)]] ∼= {(x, y) |
∃xs, ys. x = xs + x0 ∧ y = ys + y0 ∧ (xs, ys) ∈ S[[s]]}

S[[scaleXY(a, b, s)]] ∼= {(x, y) |
∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s]]}

T [[constant(c0)]] ∼= {(p, c) | c = c0}

P [[layer(s, t)]] ∼= {(p, c) | p ∈ S[[s]] ∧ (p, c) ∈ T [[t]]}
P [[pict1 . pict2]] ∼= {(p, c) | (p, c) ∈ P [[pict1]]

∨ (¬(∃c′.(p, c′) ∈ P [[pict1]]) ∧ (p, c) ∈ P [[pict2]])}

I[[(pict, c)]] ∼= {(p, c0) | (p, c) ∈ P [[pict]]

∨ (¬(∃c′.(p, c′) ∈ P [[pict1]]) ∧ c = c0)}

3 Theorems About Shapes

3.1 Some Well Known Shapes

3.1.1 The Unit Circle

The unit circle centered at the origin is defined by the set

{(x, y) | x2 + y2 ≤ 1}

It is easy to show that S[[ellipse((0, 0), 1, 1)]] is the unit circle

S[[ellipse((0, 0), 1, 1)]] ∼= {(x, y) | (x− 0)2/12 + (y − 0)2/12 ≤ 1}
∼= {(x, y) | x2 + y2 ≤ 1}
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3.1.2 A Semi-Circle

A semi-circle lying in the non-negative y-quadrant centered at the origin is defined by the
set

{(x, y) | x2 + y2 ≤ 1 ∧ y ≥ 0}
We will show that

S[[intersect(halfplane((0, 0), (1, 0)), ellipse((0, 0), 1, 1))]]

is such a semi-circle. From our defintion we have

S[[intersect(halfplane((0, 0), (1, 0)), ellipse((0, 0), 1, 1))]] ∼=
{p | p ∈ S[[halfplane((0, 0), (1, 0))]] ∧ p ∈ S[[ellipse((0, 0), 1, 1))]]}

from our previous result about the unit circle we know.

{p | p ∈ S[[halfplane((0, 0), (1, 0))]] ∧ p ∈ S[[ellipse((0, 0), 1, 1)]]} ∼=
{p | p ∈ S[[halfplane((0, 0), (1, 0))]] ∧ p ∈ {(x, y) | x2 + y2 ≤ 1}}

Again from our defintion we have

{p | p ∈ {(x, y) | (y − 0)(1− 0) ≥ (x− x0)(0− 0)} ∧ p ∈ {(x, y) | x2 + y2 ≤ 1}}

by a simple change of variables we have

{(x, y) | (x, y) ∈ {(x, y) | (y − 0)(1− 0) ≥ (x− 0)(0− 0)} ∧ (x, y) ∈ {(x, y) | x2 + y2 ≤ 1}}

which is the same as

{(x, y) | (y − 0)(1− 0) ≥ (x− 0)(0− 0) ∧ x2 + y2 ≤ 1}

Simplifying we have
{(x, y) | y ≥ 0 ∧ x2 + y2 ≤ 1}

which is equivalent to the semi-circle

{(x, y) | x2 + y2 ≤ 1 ∧ y ≥ 0}

3.1.3 The Unit Square

The square centered at the origin with side length 1 is described by the set

{(x, y) | − 0.5 ≤ x ≤ 0.5 ∧ − 0.5 ≤ y ≤ 0.5}

The meaning of the following shape expression describes such a square

insertsect(halfplane((−0.5,−0.5), (0.5,−0.5)),
insertsect(halfplane((0.5,−0.5), (0.5, 0.5)),
insertsect(halfplane((0.5, 0.5), (−0.5, 0.5)), halfplane((−0.5, 0.5), (−0.5,−0.5)))))
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Laboriously expanding the above expression to its meaning gives us

{(x, y) |
(y − (−0.5))(0.5− (−0.5)) ≥ (x− (−0.5))((−0.5)− (−0.5)) ∧
(y − (−0.5))(0.5− 0.5) ≥ (x− 0.5)(0.5− (−0.5)) ∧
(y − 0.5)((−0.5)− 0.5) ≥ (x− 0.5)(0.5− 0.5) ∧
(y − 0.5)((−0.5)− (−0.5)) ≥ (x− (−0.5))((−0.5)− 0.5)}

Simplifying we obtain
{(x, y) | y + 0.5 ≥ 0 ∧

0 ≥ x− 0.5 ∧
−y + 0.5 ≥ 0 ∧
0 ≥ −x− 0.5}

Rearranging the above we have

{(x, y) | 0 ≥ x− 0.5 ∧ 0 ≥ −x− 0.5 ∧ y + 0.5 ≥ 0 ∧ − y + 0.5 ≥ 0}

Distributing terms we have

{(x, y) | 0.5 ≥ x ∧ x ≥ −0.5 ∧ y ≥ −0.5 ∧ 0.5 ≥ y}

We may rewrite the above as

{(x, y) | x ≤ 0.5 ∧ − 0.5 ≤ x ∧ − 0.5 ≤ y ∧ y ≤ 0.5}

which is logically equivalent to

{(x, y) | − 0.5 ≤ x ≤ 0.5 ∧ − 0.5 ≤ y ≤ 0.5}

3.2 Theorems About Scaling and Translation

It is easy to show the following equation hold

S[[scaleXY(a, b, nothing)]] ∼= nothing

S[[translate(p, nothing)]] ∼= nothing

S[[scaleXY(a, b, everything)]] ∼= everything

S[[translate(p, everything)]] ∼= everything

The first two are trivially true while the second two rely on the fact that R is closed under
addition and multiplication. The following equations also hold
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S[[scaleXY(a, b, union(s1, s2))]] ∼= S[[union(scaleXY(a, b, s1), scaleXY(a, b, s2))]]

S[[scaleXY(a, b, intersect(s1, s2))]] ∼= S[[intersect(scaleXY(a, b, s1), scaleXY(a, b, s2))]]

S[[scaleXY(a, b, difference(s1, s2))]] ∼= S[[difference(scaleXY(a, b, s1), scaleXY(a, b, s2))]]

S[[translate(p, union(s1, s2))]] ∼= S[[union(translate(p, s1), translate(p, s2))]]

S[[translate(p, intersect(s1, s2))]] ∼= S[[intersect(translate(p, s1), translate(p, s2))]]

S[[translate(a, b, difference(s1, s2))]] ∼= S[[difference(translate(p, s1), translate(p, s2))]]

We can also so the following equations are true

S[[scaleXY(a0, b0, scaleXY(a1, b1, s))]] ∼= S[[scaleXY(a0a1, b0b1, s)]]

S[[translate((x0, y0), translate((x1, y1), s))]] ∼= S[[translate((x0 + x1, y0 + y1), s)]]

S[[scaleXY(a, b, translate((x0, y0), s))]] ∼= S[[translate((ax0, by0), scaleXY(a, b, s))]]

Finally we have the following set of equations

S[[scaleXY(a, b, ellipse((x0, y0), a0, b0))]] ∼= S[[ellipse((ax0, by0), (aa0, bb0))]]

S[[translate(p0, ellipse(p1, a, b))]] ∼= S[[ellipse(p0 + p1, a, b)]]

S[[scaleXY(a, b, halfplane((x0, y0), (x1, y1)))]] ∼= S[[halfplane((ax0, by0), (ax1, by1))]]

S[[translate(p0, halfplane(p1, p2))]] ∼= S[[halfplane(p1 + p0, p2 + p0)]]

All the previous equations allow us to simplify shapes so that they are free of any scale or
translation operations.

3.2.1 Scaling Distributes Over Union

To see why the equation

S[[scaleXY(a, b, union(s1, s2))]] ∼= S[[union(scaleXY(a, b, s1), scaleXY(a, b, s2))]]

holds we can expand both sides to obtain the equation

{(x, y) | ∃xs, ys, x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[union(s1, s2)]]} ∼=
{(x, y) | (x, y) ∈ scaleXY(a, b, s1) ∨ (x, y) ∈ scaleXY(a, b, s2)}

We can expand the definitions again to obtain

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧
(xs, ys) ∈ {(x, y) | (x, y) ∈ S[[s1]] ∨ (x, y) ∈ S[[s2]]}} ∼=

{(x, y) |
(x, y) ∈ {(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]]} ∨
(x, y) ∈ {(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s2]]}}
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Simplifying both sides we have

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∨ (xs, ys) ∈ S[[s2]]} ∼=
{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∨

∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s2]]}

The r.h.s. can be shown logically equivalent to

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∨ (xs, ys) ∈ S[[s2]]} ∼=
{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∨

x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s2]]}

The r.h.s. can again be simplified to

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∨ (xs, ys) ∈ S[[s2]]} ∼=
{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∨ (xs, ys) ∈ S[[s2]]}

which is trivially true.

3.2.2 Scaling Distributes Over Intersection

The by similar reasoning the following equation

S[[scaleXY(a, b, union(s1, s2))]] ∼= S[[union(scaleXY(a, b, s1), scaleXY(a, b, s2))]]

holds if

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∧ (xs, ys) ∈ S[[s2]]} ∼=
{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∧

∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s2]]}

The r.h.s. is logically equivalent to

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∧ (xs, ys) ∈ S[[s2]]} ∼=
{(x, y) | ∃xs, ys, x

′
s, y

′
s x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∧

x = ax′
s ∧ y = by′

s ∧ (x′
s, y

′
s) ∈ S[[s2]]}

Since x = axs and x = ax′
s we must have x′

s = xs similarly we must have ys = y′
s. From

these observations we can simplify the r.h.s again to obtain the trivially true statement

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∧ (xs, ys) ∈ S[[s2]]} ∼=
{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s1]] ∧ (xs, ys) ∈ S[[s2]]}

3.2.3 Scaling Distributes Over Difference

By a similar argument to our last we can show

S[[scaleXY(a, b, difference(s1, s2))]] ∼= S[[difference(scaleXY(a, b, s1), scaleXY(a, b, s2))]]
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3.2.4 Translation Distributes Over All Set Operations

We can show translation distributes over the set operations in a similar way.

3.2.5 Scale and Translation Compositions

The following equation holds

S[[scaleXY(a0, b0, scaleXY(a1, b1, s))]] ∼= S[[scaleXY(a0a1, b0b1, s)]]

because by expanding our definitions we have

{(x, y) | ∃xs, ys x = a0xs ∧ y = b0ys ∧ (xs, ys) ∈ S[[scaleXY(a1, b1, s)]]} ∼=
{(x, y) | ∃xs, ys x = a0a1xs ∧ y = b0b1ys ∧ (xs, ys) ∈ S[[s]]}

Expanding once more gives us

{(x, y) | ∃xs, ys x = a0xs ∧ y = b0ys ∧
(xs, ys) ∈ {(x, y) | ∃xs, ys x = a1xs ∧ y = b1ys ∧ (xs, ys) ∈ S[[s]]}} ∼=

{(x, y) | ∃xs, ys x = a0a1xs ∧ y = b0b1ys ∧ (xs, ys) ∈ S[[s]]}

We can simplify the l.h.s. resulting in

{(x, y) | ∃xs, ys, x
′
s, y

′
s x = a0xs ∧ y = b0ys ∧

xs = a1x
′
s ∧ ys = b1y

′
s ∧ (x′

s, y
′
s) ∈ S[[s]]} ∼=

{(x, y) | ∃xs, ys x = a0a1xs ∧ y = b0b1ys ∧ (xs, ys) ∈ S[[s]]}

Since we have xs = a1x
′
s and ys = b1y

′
s we can simplify the l.h.s. to

{(x, y) | ∃x′
s, y

′
s x = a0a1x

′
s ∧ y = b0b1y

′
s ∧ (x′

s, y
′
s) ∈ S[[s]]} ∼=

{(x, y) | ∃xs, ys x = a0a1xs ∧ y = b0b1ys ∧ (xs, ys) ∈ S[[s]]}

which is trivially true.
The equation

S[[translate((x0, y0), translate((x1, y1), s))]] ∼= S[[translate((x0 + x1, y0 + y1), s)]]

is true via a similar argument.
The equation

S[[scaleXY(a, b, translate((x0, y0), s))]] ∼= S[[translate((ax0, by0), scaleXY(a, b, s))]]

is justified since by expanding definitions we obtain the equation

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[translate((x0, y0), s)]]} ∼=
{(x, y) | ∃xs, ys. x = xs + ax0 ∧ y = ys + by0 ∧ (xs, ys) ∈ scaleXY(a, b, s)}
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By expanding definitions once more we obtain the equation

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧
(xs, ys) ∈ {(x, y) | ∃xs, ys. x = xs + x0 ∧ y = ys + y0 ∧ (xs, ys) ∈ S[[s]]}} ∼=

{(x, y) | ∃xs, ys. x = xs + ax0 ∧ y = ys + by0 ∧
(xs, ys) ∈ {(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[s]]}}

Simplifying we obtain

{(x, y) | ∃xs, ys, x
′
s, y

′
s. x = axs ∧ y = bys ∧ xs = x′

s + x0 ∧ ys = y′
s + y0 ∧

(x′
s, y

′
s) ∈ S[[s]]} ∼=

{(x, y) | ∃xs, ys, x
′
s, y

′
s. x = xs + ax0 ∧ y = ys + by0 ∧ xs = ax′

s ∧ ys = by′
s ∧

(x′
s, y

′
s) ∈ S[[s]]}

In the l.h.s. we have xs = x′
s + x0 and ys = y′

s + y0. In the r.h.s. we have xs = ax′
s and

ys = by′
s. Using both facts we can simplify the equation to

{(x, y) | ∃x′
s, y

′
s. x = a(x′

s + x0) ∧ y = b(y′
s + y0) ∧ (x′

s, y
′
s) ∈ S[[s]]} ∼=

{(x, y) | ∃x′
s, y

′
s. x = ax′

s + ax0 ∧ y = by′
s + by0 ∧ (x′

s, y
′
s) ∈ S[[s]]}

Collecting like terms in the r.h.s. leads us to the trivially true equation

{(x, y) | ∃x′
s, y

′
s. x = a(x′

s + x0) ∧ y = b(y′
s + y0) ∧ (x′

s, y
′
s) ∈ S[[s]]} ∼=

{(x, y) | ∃x′
s, y

′
s. x = a(x′

s + x0) ∧ y = b(y′
s + y0) ∧ (x′

s, y
′
s) ∈ S[[s]]}

3.2.6 Scaling an Ellipse

We will show the following equation holds

S[[scaleXY(a, b, ellipse((x0, y0), a0, b0))]] ∼= S[[ellipse((ax0, by0), (aa0, bb0))]]

First we expand definitions to obtain

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs, ys) ∈ S[[ellipse((x0, y0), a0, b0)]]} ∼=
{(x, y) | (x− ax0)

2/(aa0)
2 + (y − by0)

2/(bb0)
2 ≤ 1}

Expanding definitions in the l.h.s. again gives us

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧
(xs, ys) ∈ {(x, y) | (x− x0)

2/a2
0 + (y − y0)

2/b2
0 ≤ 1}} ∼=

{(x, y) | (x− ax0)
2/(aa0)

2 + (y − by0)
2/(bb0)

2 ≤ 1}

Simplifying leaves us with

{(x, y) | ∃xs, ys x = axs ∧ y = bys ∧ (xs − x0)
2/a2

0 + (ys − y0)
2/b2

0 ≤ 1} ∼=
{(x, y) | (x− ax0)

2/(aa0)
2 + (y − by0)

2/(bb0)
2 ≤ 1}
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On the l.h.s we have x = axs so that xs = x/a likewise for y = bys we have ys = y/b.
Simplifying we have

{(x, y) | (x/a− x0)
2/a2

0 + (y/b− y0)
2/b2

0 ≤ 1} ∼=
{(x, y) | (x− ax0)

2/(aa0)
2 + (y − by0)

2/(bb0)
2 ≤ 1}

Factoring terms on the l.h.s we have

{(x, y) | ((1/a)(x− ax0))
2/a2

0 + ((1/b)(y − by0))
2/b2

0 ≤ 1} ∼=
{(x, y) | (x− ax0)

2/(aa0)
2 + (y − by0)

2/(bb0)
2 ≤ 1}

which is the same as

{(x, y) | (1/a)2(x− ax0)
2(1/a2

0) + (1/b)2(y − by0)
2(1/b2

0) ≤ 1} ∼=
{(x, y) | (x− ax0)

2/(aa0)
2 + (y − by0)

2/(bb0)
2 ≤ 1}

Finally we have

{(x, y) | (x− ax0)
2/(aa0)

2) + (y − by0)
2/(bb0)

2 ≤ 1} ∼=
{(x, y) | (x− ax0)

2/(aa0)
2 + (y − by0)

2/(bb0)
2 ≤ 1}

3.2.7 Translation of an Ellipse

We will show the following equation holds

S[[translate((x0, y0), ellipse((x1, y1), a, b))]] ∼= S[[ellipse((x0 + x1, y0 + y1), a, b)]]

By expanding definitions we have

{(x, y) | ∃xs, ys. x = xs + x0 ∧ y = ys + y0 ∧ (xs, ys) ∈ S[[ellipse((x1, y1), a, b)]]} ∼=
{(x, y) | (x− (x0 + x1))

2/a2 + (y − (y0 + y1))
2/b2 ≤ 1}

Expanding definitions in the l.h.s agian we have

{(x, y) | ∃xs, ys. x = xs + x0 ∧ y = ys + y0 ∧
(xs, ys) ∈ {(x, y) | (x− x1)

2/a2 + (y − y1)
2/b2 ≤ 1}} ∼=

{(x, y) | (x− (x0 + x1))
2/a2 + (y − (y0 + y1))

2/b2 ≤ 1}

Simplifying we have

{(x, y) | ∃xs, ys. x = xs + x0 ∧ y = ys + y0 ∧ (xs − x1)
2/a2 + (ys − y1)

2/b2 ≤ 1} ∼=
{(x, y) | (x− (x0 + x1))

2/a2 + (y − (y0 + y1))
2/b2 ≤ 1}

In the l.h.s we know that x = xs +x0 so that xs = x−x0 like wise we know have ys = y−y0,
therefore we can simplify the l.h.s as

{(x, y) | ((x− x0)− x1)
2/a2 + ((y − y0)− y1)

2/b2 ≤ 1} ∼=
{(x, y) | (x− (x0 + x1))

2/a2 + (y − (y0 + y1))
2/b2 ≤ 1}

Rearranging the l.h.s. we obtain the trivial equality

{(x, y) | (x− (x0 + x1))
2/a2 + (y − (y0 + y1))

2/b2 ≤ 1} ∼=
{(x, y) | (x− (x0 + x1))

2/a2 + (y − (y0 + y1))
2/b2 ≤ 1}

10



3.2.8 Scaling a Halfplane

3.2.9 Translation of a Halfplane
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