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1 Introduction

This assignment has 20 points total.
In this assignment, you will write a type-checker for a version of the PolyMinML language. This type

checker will perform bi-directional type inference, allowing many type annotations to be inferred automat-
ically from the context of a term. Unlike ML-style type inference, which only works for languages with
predicative prenex-polymorphism, bi-directional type inference scales to much richer languages, including
languages with general polymorphism (like in System F/PolyMinML) and subtyping. The downside of bi-
directional type inference is that programmers must write down some typing annotations in their programs.

2 Type inference for PolyMinML

Consider the following example:

fun f(x : int) : unit -> unit =
(fun g(y : unit) : unit = y)

end

In this example, the type annotations for the argument and return type of g are redundant; because f
specifies its return type, we know what the type of g must be. This frequent repetition of type information
makes using plain PolyMinML tedious. Take a look at how we might write and use the polymorphic identity
function.

if ((typefun t. fun f(x : t) : t = x) [ bool ] true) then 1 else 0

Here, the instantiation of the polymorphic function at type bool is redundant; we know that the result
must be of type bool, since it is the conditional in an if expression. Thus, some expressions need type
annotations, and some do not. The essence of our type-checking algorithm will be to make a syntactic
distinction between expressions whose type can be inferred, and those whose types can be checked (given
some context about what their type should be).

The intuition is that checkable expressions appear only where their type can be determined by context,
and so they don’t need type annotations. Inferable expressions are what we’ve primarily used in previous
type checkers. These have a unique type which can be determined in a particular variable context Γ.

With two different kinds of expressions, we have two forms of typing judgments:

∆, Γ ` c ↓ τ

∆, Γ ` i ↑ τ
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The first says that given a type variable context ∆ and an expression variable context Γ, as well as the
target type τ , we can verify that the checkable expression c has the given type τ .

The second says that given similar contexts ∆ and Γ, we can deduce the unique type τ for the inferable
expression i.

To recap: We separate expressions into two categories, checkable and inferable. Then we have two
separate judgments: one which says that given a type, we can verify a checkable expression has that type,
and one which allows us to deduce the type of an inferable expression. The next two sections give a precise
description of the abstract syntax and the algorithm we use to check checkable expressions and infer the
types of inferable expressions.

2.1 PolyMinML Abstract Syntax

inferable i ::= ()
| x
| n
| true
| false
| primop (c1, c2, . . .)
| i c
| fun f (x : τd) : τr = c
| if cb then it else if fi
| i [ τ ]
| typefun t. i

checkable c ::= I (i)
| cfun f(x) = c
| cif cb then ct else cf fi
| i []
| c i
| ctypefun t. c

All of the inferable expressions should be familiar. For each one, we can determine its unique type using
the standard typing rules. Note the places where checkable expressions c appear. If we know the type of a
function (because it is inferable), we know what the type of the argument must be, so the argument need
only be a checkable expression. The body of a function is also checkable, since its type is given in the function
expression. Since we know the types of the arguments to primops, those expressions are also cs. Finally, we
know that the conditional expression in an if must be a boolean, so that too is checkable.

Any inferable expression is checkable, since we can just ignore the context and get the type using the
inference algorithm (however, it is still necessary to distinguish an inferable expression from an inferable
expression as a checkable expression). The form I ( i ) means an i converted into a c. The cfun expression
is checkable: given the type it is supposed to have (which must be a function type), we can type-check the
function as we would for a standard annotated fun. The cif expression can be checked as well, since we
know the condition must be of type BOOL, and we know that the types of the branches must match the type
of the whole expression. A checkable expression applied to an inferable expression is checkable: we know the
return type of the function (it is the type we are checking against), and we know the domain type (it is the
type of the argument). ctypefun is checkable if its body is checkable; we simply wrap the type of the body
in a ∀ type. Finally, we are able to instantiate a polymorphic inferable expression at an unspecified type,
provided we know what the type of the instantiation is supposed to be. All of these strategies are made
precise in the next section.
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2.2 PolyMinML Typing Rules

Inferable Expressions

∆,Γ ` () ↑ unit (unit)

∆,Γ ` n ↑ int (int)

∆,Γ ` true ↑ bool (true)

∆,Γ ` false ↑ bool (false)

Γ(x) = τ

∆,Γ ` x ↑ τ (var)

∆,Γ ` c1 ↓ int ∆,Γ ` c2 ↓ int

∆,Γ ` +(c1, c2) ↑ int (plus) etc.

∆,Γ ` i ↑ τ ′ → τ ∆,Γ ` c ↓ τ ′

∆,Γ ` i c ↑ τ (app)

∆ ` τ1 ok ∆ ` τ2 ok ∆,Γ[f : τ1 → τ2][x : τ1] ` c ↓ τ2

∆,Γ ` fun f(x : τ1) : τ2 = c (fun)

∆,Γ ` c ↓ bool ∆,Γ ` it ↑ τ ∆,Γ ` if ↑ τ

∆,Γ ` if c then it else if fi ↑ τ (if)

∆ ` τ ok ∆,Γ ` i ↑ ∀t.τ ′

∆,Γ ` i[τ ] ↑ [τ/t]τ ′ (instantiate)

∆[t],Γ ` i ↑ τ

∆,Γ ` typefun t.i ↑ ∀t.τ (forall)

Checkable Expressions

∆,Γ ` i ↑ τ ′ τ = τ ′

∆,Γ ` I(i) ↓ τ (inferable)

∆,Γ[f : τ1 → τ2][x : τ1] ` c ↓ τ2

∆,Γ ` cfun f(x) = c ↓ τ1 → τ2 (cfun)

∆,Γ ` c ↓ τ ′ → τ ∆,Γ ` i ↑ τ ′

∆,Γ ` c i ↓ τ (appc)

∆[t],Γ ` c ↓ τ

∆,Γ ` ctypefun t.c ↓ ∀t.τ (forallc)

∆,Γ ` i ↑ ∀t.τ ′ ∃σ.(τ = [σ/t]τ ′)
∆,Γ ` i[] ↓ τ (instantiatec)
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These rules reflect the observations we made in the last section. The trickiest one is for the checkable
polymorphic instantiation (instantiatec). Here, we require the existence of a type σ which “fills in the holes”
in τ ′ to get τ . Algorithmically, we can do this by structurally comparing τ and τ ′, and verifying that any
occurence of the type variable t in τ ′ is matched up with the same type σ in τ .

2.3 Your Job: Implement Bi-directional Type Checking

The rules given in the previous section are suggestive of an algorithm, consisting of two mutually recursive
functions, check and infer. Both take a set of type variables (∆), and a variable context (Γ). infer then
takes an i and returns its unique type τ in that context (if it exists). check takes a c and a type τ and
verifies that it is compatible with that type.

Question 1. [7 points]
Complete the PolyMinML type-checker by implementing the functions check and infer in the file

typing.sml. These functions should meet the following specification:

check : (var → bool) → (var → typ) →
cexp → typ → unit

Such that check ∆ Γ c τ returns unit if the type is consistent, or raises the exception TypeError with
an informative message otherwise.

infer : (var → bool) → (var → typ) →
iexp → unit

Such that infer ∆ Γ i returns the unique type τ of i in that context, or raises the exception TypeError
with an informative message if no such τ exists.

Hints

• Avoid unnecessarily inefficient or convoluted code, and document non-trivial invariants/preconditions.

• Make sure to be careful about type variables, especially concerning capture and alpha-equivalence
(∀t.t → t and ∀u.u → u are the same type).

• You will probably want to make use of the functions in Types and PolyMinML when implementing
check and infer. However, you only need to modify typing.sml for your solution to this part of the
assignment.

• In order to test your type checker, you need to construct test expressions directly in ML using the
datatype declared in the polyminml.sml file. We have provided a number of test cases in the file
testcases.sml. Tests t1, t2, . . . should type-check, and tests f1, f2, . . . should fail. Test one of
these expressions with, for example:

Typing.typecheck Test.t1;

• Make sure that you test your code, and since our test cases are not at all exhaustive, give yourself time
to develop your own.
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Question 2. [7 points]
Extend the type checking algorithm and implementation to handle existential types. Be sure to:

• Extend the syntax to define the checkable and inferable existential terms.

• Define the bi-directional type checking inference rules for existentials.

• Extend the PolyMinML type checker with existential types. This will involve extending the files
polyminml.sml (be sure to extend the abstract syntax of PolyMinML as well as the substitution func-
tions defined in this file), types.sml and typing.sml.

• Suitable test cases that test both well-typed and ill-typed expressions.

Question 3. [6 points]
Extend the inference rules for type checking given in question 1 so they handle subtyping. In this question,

make your typing rules as general as possible. You do not need to define the subtyping relation, just the
checkable and inferable rules. You may assume that given two types τ1 and τ2 that the relation τ1 <= τ2 is
decidable. You may NOT assume that there is a join function join(τ1, τ2). You must complete your solution
in the most general way you can without using such a relation.

You do NOT have to implement this question! Just define the rules.
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