
Lecture 7 - Message Authentication Codes

Boaz Barak

October 10, 2005

Data integrity Until now we’ve only been interested in protecting secrecy of data. However, in
many cases what we care about is integrity.

Maintaining integrity is about preventing an adversary from tampering with the data that
was sent or stored by the legitimate users. For example, often people are not worried so
much about secrecy of their email, but they definitely want to be assured that the email they
received was indeed the one being sent.

Encryption and integrity Does encryption guarantee integrity? It might seem at first that yes:
if an attacker can’t read the message, how can she change it?

However, this is not the case. For example, suppose that we encrypt the message x with the
PRF-based CPA-secure scheme to 〈r, fs(r)⊕x〉. The attacker can flip the last bit of fs(r)⊕x
causing the receiver to believe the sent message was x1, . . . , xn−1, xn.

Checksums etc. A common device used for correcting errors is adding redundancy or checksums.
A simple example is adding to x as a last bit the parity of x, that is

∑
i xi (mod 2).1 When

receiving a message, the receiver checks the parity, and if the check fails, considers the message
corrupted (and if appropriate asks to resend it). This works against random errors but
not against malicious errors: the attacker can change also parity check bit. In fact, as we
saw above, the attacker can do this even if the message (including the parity check bit) is
encrypted.

Message Authentication Codes (MAC) The cryptographic primitive that we use for this is
a message authentication code (MAC). A message authentication code (MAC) consists of
two algorithms (Sign,Ver) (for signing and verifying). There is a shared key k between the
signer and the verifier. The sender of a message x computes s = Signk(x), s is often called a
signature or a tag. Then, it sends (x, s) to the receiver. The receiver accepts the pair (x, s)
as valid only if Verk(x, s) = 1.

Security for MACs We define a MAC secure if it withstands a chosen message attack. (Notation:
n - key length, m - message length, t - tag length)

Definition 1 (CMA secure MAC). A pair of algorithms (Sign,Ver) (with Sign : {0, 1}n ×
{0, 1}m → {0, 1}t, Ver : {0, 1}n × {0, 1}m × {0, 1}t → {0, 1}) is a (T, ε)-CMA-secure MAC if:

Validity For every x, k, Verk(x,Signk(x)) = 1.

Security For every T -time Adv, consider the following experiment:
1Sometimes this is generalized to more bits, say, parity mod 216.

1



• Choose k ←R {0, 1}n

• Give adversary access to black boxes for Signk(·) and Verk(·).
• Adversary wins if it comes up with a pair 〈x′, s′〉 such that (a) x′ is not one of the

messages that the adversary gave to the black box Signk(·) and (b) Verk(x′, s′) = 1.

Then the probability Adv wins is at most ε.

Naturally, we define (Sign,Ver) to be CMA-secure if for every n it is (T (n), ε(n))-CMA-secure
for super-polynomial T, ε. In other words, there is no polynomial-time Adv that succeeds with
polynomial probability to break it.

Example As discussed above, the following are not MACs:

• A CPA-secure encryption scheme.

• A cyclic redundancy code (CRC)

Construction for a message authentication code. We prove the following theorem:

Theorem 1. Let {fk} be a PRF. Then the following is a MAC:

• Signk(x) = fk(x).

• Verk(x, s) = 1 iff fk(x) = s.

Proof. We prove this in the typical way we prove constructions using PRFs are secure: we
define an ideal MAC scheme that uses a truly random function, prove it secure, and then
derive security for our real scheme.

Proof of security for ideal scheme. Let A be an adversary running a chosen-message
attack against the ideal scheme. At the end of the attack it outputs a string x′ that was not
asked by it before from the signing oracle and some supposed tag t′. Since this is a random
function, we can think of the oracle at this point choosing the tag t for x′ at random and we
have that Pr[t = t′] = 2−n.

Authentication and secrecy In some settings, it may seem that we don’t care so much about
authentication but rather only about secrecy. Indeed, many early (and not so early) com-
mon cryptographic protocols did not use MACs at all and used only encryption (sometimes
combined with CRCs). These include the first version of SSH (secure shell), WEP (wireless
encryption protocol), and old version of the IPSEC protocol. However, it turns out that
in all these cases, the lack of MACs leads to security vulnerabilities. (See Wagner’s lecture
10 in CS276 2004, http://www.cs.berkeley.edu/∼daw/teaching/cs276-s04/10a.ps and
http://www.cs.berkeley.edu/∼daw/teaching/cs276-s04/10b.ps )

We are going to give here a simple but tailored counterexample showing this:

2



The login problem. Assume that client and server share a secret PIN PIN that was
chosen at random between 0 and 10000 (e.g. a 13 bit number). Suppose in addition they
have a shared key k ←R {0, 1}n between it and the server, which an adversary does not know.
Now, suppose they run the following protocol: the client sends the server an encryption of
PIN , and the server decrypts and verifies that this is the correct PIN. If not, the server
aborts the communication.

Intuitively, the attacker has no chance to learn the PIN, since it is never sent “in the clear”
but only encrypted. However, it turns out that the intuition is wrong.

Lemma 1. There exists a CPA secure scheme (E,D) such that if the client and server use
(E,D) in this protocol, an attacker that sits on the communication channel between the client
and server can learn the PIN after at most 13 sessions.

Proof. We saw that for some CPA-secure schemes the attacker can modify an encryption of
x to an encryption of x′ where x′ is x with the ith bit flipped. There are also such schemes
where the attacker can modify an encryption of x to an encryption of x〈i〉 where x〈i〉 is x
with the ith bit made to zero (regardless of whether originally xi was zero or one). We’ll see
such a scheme below.

Now the attacker can use the following strategy: for 1 ≤ i ≤ 13, at the ith session, it converts
the encryption of PIN into the encryption of PIN〈i〉 and sees whether the server aborts the
communication or not. Within 13 sessions it will learn all the bits of the PIN.

Example of CPA-secure scheme (E,D) such that adversary can zero out the ith

bit. We define the following encryption scheme:

• Key: s ∈ {0, 1}n (we’ll use a PRF ensemble {fs})
• Encryption: to encrypt x ∈ {0, 1}n/2 encode each bit of x to two bits in the following

way: if it is zero then encode it as 00 if it is one then encode it as 11. Let x̃ ∈ {0, 1}n
be the encoded version of x. Then use the standard PRF based encryption to encrypt
x̃. That is, send 〈r, fs(r)⊕ x̃〉 for r ←R {0, 1}n.

• Decryption: to decrypt, decrypt in the usual way to get x̃, then decode x̃ in the following
way: 00, 10, 01→ 0 , 11→ 1.

This obviously satisfies Ds(Es(x)) = x and is also CPA-secure (the encoding of x to x̃ cannot
hurt security, this is intuitive, but can also be proven easily from the definition of CPA
security).

To change an encryption ˜r, y of x to an encryption of x〈i〉 the attacker simply flip the 2ith

bit of y.

Why is this meaningful? On a first encounter a natural reaction to such a counterexample
is that this is “cheating”. This is an obviously contrived encryption scheme which no designer
in his right mind would use in a login protocol. How can such an example teach us something
about security?

There are several answers to this concern (in some sense these are all different ways to state
the same answer):

3



1. Although this example is contrived, its only a simplified presentation of attacks which
worked for real-world protocols such as WEP, IPSEC, SSH etc.

2. Such examples teach us what we need to assume about the underlying components that
we use. If there is a login protocol that uses only encryption and not MAC, this example
tells us that if the protocol is secure at all, its security is not based solely on the fact
that the encryption scheme is CPA secure, but rather the protocol needs some additional
property from the encryption scheme. This is important because even if the protocol
is secure now, at some future date someone might decide to use a different encryption
scheme for the protocol, and so it is crucial to explicitly state the security requirements
from the encryption scheme used.

3. The fact that this example does not immediately imply that protocol X is insecure does
not mean that protocol X is secure . The onus is always on the protocol designer to
demonstrate that the protocol is secure. If the designer claims that his login protocol is
secure, he should state under what conditions on the encryption scheme this will be the
case.

4


