
Lecture 5 - Pseudorandom Functions, CPA Security

Boaz Barak

October 4, 2005

Note: See links on the web page to extracts of Goldreich’s book for both the construction of PRFs
and the construction of a CPA-secure encryption from them.

CPA Secure Ecnryption scheme. This is the following game:

• Adversary chooses x1, x2.

• Sender chooses k ←R {0, 1}n, i←R {1, 2} and sends y = Ek(xi) to the adversary.

• For as long as adversary desires (but less than T – its running time), adversary chooses
x and sees Ek(x). Note that it is legitimate for the adversary to choose x = x1 or x = x2

but it can also choose other messages.

• Adversary comes up with a guess j. It is successful if i = j.

(E,D) is (T, ε)-CPA secure if for every T -sized adversary, Pr[j = i] ≤ 1/2 + ε. We think
of a scheme as simply CPA secure if with a key size n it is (T (n), ε(n))-CPA secure for
superpolynomial T (·) and ε(·).
Note: a deterministic scheme can’t be CPA secure (see also exercise).

Constructing a CPA secure scheme. It is not immediate how to construct such a scheme from
a pseudorandom generator. To do that, we’ll use a new creature called pseudorandom func-
tions (PRF). PRFs have many other applications in cryptography and seem quite amazing,
but they can be constructed based on any pseudorandom generator.

Pseudorandom functions A random function F (·) from n bits to n bits can be thought of as
the following process: for each one of its possible 2n inputs x, choose a random n-bit string
to be F (x). This means that we need 2n ·n coins (which is alot) to choose a random function.
We also need about that much size to store it.

We see that a function that can be described in n bits is very far from being a random function.
Nevertheless we’ll show that under our Axiom, there exists a pseudorandom function collection
that can be described and computed with poly(n) bits but is indistinguishable from a random
function.

We let F = {fs}s∈{0,1}∗ be a collection of functions. Suppose that fs : {0, 1}|s| → {0, 1}|s|
(this is not important and we can generalize the definition to different input and output
lengths). We say that the collection is efficiently computable if the mapping s, x 7→ fs(x) is
computable in polynomial time. We say that it is pseudorandom if it satisfies the following
for every n:

Game 1:

1

• s is chosen at random in {0, 1}n.

• Adversary gets black-box access to the function fs(·) for as long as it wishes (but less
than T).

• Adversary outputs a bit v ∈ {0, 1}.

Game 2:

• A random function F : {0, 1}n → {0, 1}n is chosen.

• Adversary gets black-box access to the function F (·) for as long as it wishes (but less
than T).

• Adversary outputs a bit v ∈ {0, 1}.

We say that the collection is a PRF if for some super-polynomial T, ε and for every T -sized
adversary ∣∣∣Pr[Adv outputs 1 in Game 1]− Pr[Adv outputs 1 in Game 2]

∣∣∣ < ε

GGM result Intuitively, it is not at all clear that such functions should exist. However, it was
proven by Goldreich Goldwasser and Micali that if PRG exist then so do PRFs. (The other
direction is pretty easy — can you see why?)

This means that under our “axiom” we have PRFs, so before describing this proof, let’s see
how we can use PRFs to get CPA-secure encryptions.

A CPA secure encryption . We construct the following encryption scheme:

• Key k ←R {0, 1}n.

• To encrypt Ek(x) chooses r at random in {0, 1}n and sends 〈r, fk(r)⊕x〉. Note that this
is a probabilistic encryption.

• Given 〈r, y〉 to decrypt compute fk(r)⊕ y.

Security Note: this proof is rather sketchy. See Goldreich for a proper writeup.

Theorem 1. (E,D) is CPA secure.

Proof. Let Adv be a T -size adversary breaking (E,D) in a CPA attack with probability ε (for
T � 2n). We’ll use this to break the security of the PRF.

The idea is to show that the scheme will be statistically secure (regardless of the running time
of the adversary, as long as it makes less than 2n/10 queries) if we used completely random
functions. Then, we’ll say that if it is not secure we can convert this into a distinguisher for
the PRF family.

Claim 1.1. Let (EI ,DI) be the “imaginary” scheme where the parties share as a key a random
function F (·).1 Then, the probability that Adv guesses xi in a CPA attack is less than 1/2 +
2−n/10.

1Note that this imaginary scheme uses a key much longer than the total length of all messages.

2

Proof. The adversary’s guess is a function of the messages that it sees. Let’s consider these
messages that the adversary sees when i = 1 and i = 2. Denote the distribution of these
messages by Y

(1)
0 , . . . , Y

(1)
T and Y

(2)
0 , . . . , Y

(2)
T where Y

(i)
0 = Fk(r)⊕ xi.

First note that T < 2n/10. Let r1, . . . , rT be all the random strings chosen by the sender
during the CPA attack (they may be less than T of those but assumes it’s T since it only
makes things harder for us). For a fixed i and j the probability that ri = rj is 2−n. Therefore
by the union bound, the probability that there exists i and j such that ri = rj is at most
T 22−n < 2−n/2. This event happens with so low probability we can ignore it and essentially
assume it never happens.

Now if every ri is different then no matter what the encrypted value is, all the messages
Y

(i)
T , . . . , Y

(i)
T are independent and uniform. This is because we can think of the following

“lazy” evaluation of the function F : we only choose F ’s output on a new value r when we are
asked of it. However, if all the messages are distinct then every time the function is evaluated
we choose a fresh random value.

We use this result to transform a successful CPA adversary for (E,D) into a successful dis-
tinguisher for the PRF family.

Construction of PRFs As you can see on the web page, there are several candidate constructions
for PRFs. However, for us the important thing is that we don’t need to introduce a new axiom,
since we can construct them directly from ordinary PRG.

See Goldreich (link on web site) for a more rigorous and complete description of this con-
struction and its proof.

The best way to think about the construction is the following. Suppose that you have a PRG
G : {0, 1}n → {0, 1}2n. Construct a depth n full binary tree, which you label as follows: the
root is labeled with a string s (the seed of the function). For each non-leaf node labeled v,
the two children are labeled with G(v)[1...n] and G(V)[n+1...2n].

We have 2n leaves and we can identify each one of them with a string in {0, 1}n in the natural
way (the string depicts the path from the root to the leaf with 0 meaning take the left child
and 1 meaning take the right child). We define fs(x) to be the label of the leaf corresponding
to x.

Although the full tree is of exponential size to compute fs(x) we only need to follow an n-long
path from the root to the leaf and so it is computable in polynomial time.

Formally define G0(s) to be the first n bits of G(s) and define G1(s) to be the last n bits. We
define fs(x) to be Gxn(Gxn−1(· · ·Gx1(s)) · · ·).

Proof

Theorem 2. Let G : {0, 1}n → {0, 1}2n then the construction described above is a PRF
collection.

Proof. Suppose for the sake of contradiction that there is an T -time adversary Adv that man-
ages to distinguish between access to fs(·) and access to a random function with probability
at least ε. We’ll convert it to a T ′ adversary that manages to distinguish between G(Un) and
U2n with probability at least ε′, for T ′ and ε′ polynomially related to T, ε.

3

Without loss of generality. We’re going to make some modifications to the behavior of
Adv which will not change its distinguishing probability and not add too much to its running
time but will make our life a little easier. Since such modifications can be made, we can just
assume that Adv is already of the modified form. That is, we assume the following about
Adv:

• It makes exactly T queries: if it makes less, we’ll change it to ask “meaningless” queries.

• It never asks the same question twice: we can modify Adv to keep track of all the
responses it received from its oracle and whenever it wants to get an answer for a query
it already asked, it can use that table.

We now consider the interaction of Adv with an oracle computing fs(·). The algorithm we
specified for fs is a stateless algorithm that given s and x computes fs(x) without relying on
any precomputed information. However, we can implement the oracle in any way we want as
long as it still computes fs(·). Thus, we’ll implement it in the following way:

Description of the fs(·) oracle. The oracle will build keep the binary tree we described
above. Of course it cannot keep the entire tree, but it will build it and maintain it in response
to each query of Adv.

• Initially the tree contains only the root which is labeled with s.

• Whenever Adv makes a query for fs(x), the oracle will look at the path from the leaf
x to the root. Let v be the lowest point in the path which is already computed. The
oracle will compute all the values along the path from v to x and store the labels, finally
returning the label of x.

Note: Whenever the oracle invokes G on a label x of an internal (non-leaf) node v, it will
label the children of v with x0 = G0(x) and x1 = G1(x) and erase the label of v. Note that
this is OK since the oracle will never need to use these values again. Also note that the oracle
needs to make at most M = T · n invocations of G during the entire process.

The hybrids. We are going to use a hybrid argument to prove that the interaction of
Adv with this oracle is indistinguishable from an interaction with a random function. For
i = 0, . . . ,M we define the hybrid H i in the following way:

This is the adversary’s view in an interaction with the oracle except that for the first i times
when the oracle is supposed to invoke G to label the two children of some node v labeled
x, the oracle does not do this but rather does a “fake invocation”: instead of labeling v’s
children with (x0, x1) = G(x) it chooses x0, x1 at random from {0, 1}n and labels the two
children with x0, x1, erasing the label of v.

Clearly H0 is equal to the adversary’s view when interacting with fs while HM is equal to
the adversary’s view when interacting with a random function.

Thus, we only need to prove that H i is indistinguishable from H i−1. However, this follows
from the fact that G is a pseudorandom generator.

4

Proof of indistinguishability of H i and H i−1. We’ll make the following modification to the
operation of the oracle in H i: in the first i “fake invocations” of G, when the oracle chooses
at random x1 and x2 and uses these to label the nodes of v, it will do something a bit different:
it will erase the label of v but use a “lazy” evaluation: it will mark the children of v as “to
be chosen at random” and will choose each of these labels at random only when it will be
needed at a future time. (Note that typically the label for one of the children will be needed
in the next step, but the label for the other child may only be required to answer a future
query or perhaps never). Even the root s is not chosen initially but rather is initiated with
the “to be chosen at random” label. Note that for the first i “fake invocations” whenever the
value for an internal node is used then it is immediately deleted, and so in the first i steps all
the internal nodes are either untouched or marked “to be chosen at random”. The important
observation is that all this is only about the oracle’s internal computation and has no effect
on the view of the adversary. (Also, the oracle can stop being lazy and choose values for some
of the nodes without any effect on the view.)

We’ll now prove the indistinguishability. Suppose we had a distinguisher C between H i and
H i−1. Then, we’ll build a distinguisher C ′ for the G in the following way:

Input: y ∈ {0, 1}2n (y either comes from U2n or from G(Un))

Operation: Run the oracle as usual. However when getting to the ith “fake invocation”.
In this invocation it is supposed to take an internal node v which is marked “to be chosen
at random”, and choose a random value x for it. In the hybrid H i−1 the oracle chooses
(x0, x1) = G(x) and uses that to label v’s children, then erasing x. In the hybrid H i the
oracle chooses x0 and x1 at random. Our distinguisher will simply let (x0, x1) = y and use
this as the labeling.

It is clear that if y ∼ G(Un) then we get H i−1 and if y ∼ U2n we get H i. Therefore the success
of C ′ in distinguishing G(Un) and U2n equals the success of C in distinguishing H i−1 and H i.
Since C ′ is only polynomially slower than C we’re done.

5

