
Lecture 4 - Computational Indistinguishability, Pseudorandom

Generators

Boaz Barak

September 26, 2005

Pace, proofs Why do we need mathematical proofs?

Computational difficulty Last lecture we introduced Boolean circuits to help us model com-
putationally bounded adversaries. Today we’ll start using this model to get definitions (and
constructions) for better encryption schemes.

Computational Definitions As a first attempt, we can say that a scheme (E,D) is T -secure if
there is no T sized circuit that given y = Ek(x), computes x. However, as before this won’t be
sufficient since we need a definition that implies that it is hard to even get partial information.
Thus, we will need to use a more sophisticated definition. A crucial point in that definition
will be the notion of computational indistinguishability.

Computational Indistinguishability Recall that we defined that statistical distance of two dis-
tributions X and Y , ∆(X, Y ) to equal the maximum over all sets S of∣∣Pr[X ∈ S]− Pr[Y ∈ S]

∣∣
If ∆(X, Y ) ≤ ε we said that X ≡ε Y .

An equivalent way to phrase this is that ∆(X, Y ) is equal to the maximum of∣∣Pr[f(X) = 1]− Pr[f(Y ) = 1]
∣∣

for all Boolean functions f : Supp(X) ∪ Supp(Y )→ {0, 1}.
We now define X and Y to be (T, ε)-computationally indistinguishable if∣∣Pr[C(X) = 1]− Pr[C(Y ) = 1]

∣∣ ≤ ε

for all circuits C of size ≤ T . We denote this by X ≈T,ε Y .

A special case is when Y is equal to the uniform distribution Un. In this case if X ≈T,ε Y we
say that X is (T, ε)-pseudorandom.

Semantic security and indistinguishability We now finally the language to define security for
encryptions in a way that will bypass our impossibility results.

Definition 1 (Semantic Security). Let (E,D) be a valid encryption scheme with

E : {0, 1}n︸ ︷︷ ︸
key

×{0, 1}m︸ ︷︷ ︸
message

→ {0, 1}∗︸ ︷︷ ︸
ciphertext
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We say that (E,D) is (T, ε)-semantically secure if for every T -sized circuit Adv, and every
distribution X ⊆ {0, 1}m of plain-text messages and every function f : {0, 1}n → {0, 1}∗
(with |f(x)| ≤ T ),∣∣ Pr

x←RX,k←R{0,1}n
[Adv(Ek(x)) = f(x)]︸ ︷︷ ︸

posteriori success prob.

− max-prf(X)︸ ︷︷ ︸
apriori success prob

∣∣ < ε

Recall that max-pr(Z) is equal to the maximum probability of a single element in the distri-
bution Z.

Likewise, we can we can give the analog for the indistinguishability definition for computa-
tionally bounded adversaries:

Definition 2 (Indistinguishability). Let (E,D) be a valid encryption scheme with

E : {0, 1}n︸ ︷︷ ︸
key

×{0, 1}m︸ ︷︷ ︸
message

→ {0, 1}∗︸ ︷︷ ︸
ciphertext

We say that (E,D) is (T, ε)-indistinguishable if for every T -sized circuit Adv, and every pair
x1, x2{0, 1}m of plain-text messages

Pr
i←R{1,2},k←R{0,1}n

[Adv(Ek(xi)) = i] <
1
2

+ ε

Once again both these definitions are equivalent to one another and to the following condition:
if we define Yx

M= EUn(x) then for every x, x′, Yx ≈T,ε Yx′ . (Actually these equivalences hold
up to some constant factors in T and ε but such factors won’t be of significance to us.)

Constructions: Definitions don’t mean much without a construction. Unfortunately, at the mo-
ment we don’t know of any efficiently computable encryption scheme that satisfies this defi-
nition.

Thus we’ll need to make some conjecture or axiom, which we’ll then use to construct such a
scheme. This is what we do now:

Definition 3. A function g : {0, 1}n → {0, 1}m is called a (T, ε)-pseudorandom generator if
g(Un) is (T, ε)-pseudorandom.

Note that it’s trivial to construct a pseudorandom generator with m ≤ n: just use g(x) = x,
therefore we’ll require that m > n. m−n is called the stretch of the pseudorandom generator.

Also note that to get a pseudorandom generator with a non-trivial stretch, we must use the
computational indistinguishability. That is, we have the following lemma:

Lemma 1. For every g : {0, 1}n → {0, 1}m with m > n, dist(g(Un), Um) ≥ 1/2.

Proof. Define S to be the image of g(·) (i.e. s = Supp(g(Un)). Note that Pr[g(Un) ∈ S] = 1.
However |S| ≤ 2n and hence Pr[Um ∈ S] ≤ 1/2 (since 2m ≥ 2 · 2n).

We note that there does in fact exist a pseudorandom generator with a very large stretch and
very strong computational indistinguishability:
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Lemma 2. For every (sufficiently large) n, there exist a (2n/10, 2−n/10)-pseudorandom gen-
erator g : {0, 1}n → {0, 1}2n/10

Proof. Left as exercise.

Efficiently computable PRG’s The problem is that we can’t use the existence result of Lemma 2
since to actually construct usable encryption schemes we need a pseudorandom generator g(·)
that is itself efficiently computable.

This is what we define next:

Definition 4. Let G = {Gn} be a function with infinite domain where for every n, Gn :
{0, 1}n → {0, 1}m(n) with m(n) > n. We say that G is a pseudorandom generator if

• G ∈ P (G is computable in polynomial-time)

• There exist functions T, ε : N → N such that T (n) = nω(1) and ε(n) = n−ω(1) and such
that for every n, Gn is a (T (n), ε(n))-pseudorandom generator.

Note: We say that functions T (·), ε(·) are super-polynomial if they satisfy these conditions
(i.e., for every large enough n and polynomial p(·), T (n) > p(n) and ε(n) < 1/p(n)).1 Observe
that if T (·), ε(·) are super-polynomial than so is T 1/10

n10 and n10ε1/10 (where 10 can be replaced
with any other constant). So we’ll treat a (T, ε)-PRG and a (T 1/c/nc, ncε1/c)-PRG as having
essentially equivalent security.

Asymptotic vs. concrete. At the end of the day, our goal is to construct asymptotic
(infinite length) PRGs, encryptions etc.. This is because such construction guarantee us that
whatever security we want, we can always use a larger input length and get it (where because
of the super-polynomial relationship, we’ll only need to increase the input a bit to get strong
security). However, throughout this course we’re going to switch between the concrete and
asymptotic viewpoint, always trying to use the notations that make thing more intuitive and
simple.2

We’re going to make the following assumption/axiom:

Axiom 1 (The PRG axiom). There exists a pseudorandom generator G.

Note that this axiom implies P 6= NP (can you see why?).

We’ll see that we can do wonderful things with this axiom.

Candidates for pseudorandom generators: To justify this axiom we need at least candidate
functions that we conjecture to be pseudorandom generators (even if we can’t prove it). Below
are two such candidate functions. We’ll see more such candidates later on in the course.

1This is a slight abuse of notation since we should really call ε(·) sub-polynomial, but it makes things somewhat
less cumbersome.

2There’s also a practical advantage to using the concrete notations and that is that we can derive very specific
guarantees on security and so derive specific recommendations for key sizes. However, we only aim for simplicity of
exposition in this course, and we won’t try to derive the tightest reductions possible.
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RC4 RC4 was invented by Ron Rivest for RSA. It’s design is a trade secret and so the actual
algorithm is not supposed to be known (security by obscurity). Nevertheless the code was
obtained by reverse engineering and leaked to the cyberpunks mailing list. Even though RC4
is widely used including in the WEP and WPA protocols for wireless networks (IEEE 802.11)
and the SSL protocol, several weaknesses were found in it and so it can not be considered a
secure pseudorandom generator. (And so in fact it’s not a good candidate, however I present it
here since it is widely used and illustrates principles that are utilized in more secure candidates
for pseudorandom generators.)

A bite is a number from 1 to 256 (or equivalently, a string in {0, 1}8). The input to the
pseudorandom generator is a permutation S : [256] → [256]. The output is m bytes (where
we can control the value of m to be as large as we want). The following is the pseudocode for
RC4:

i := 0
j := 0
num_outputted = 0;
while num_outputted <= m:

i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap(S[i],S[j])
num_outputted := num_outputted + 1
output S[(S[i] + S[j]) mod 256]

We see that RC4 expands log(256!) bits which is roughly 8 · 256 = 2048 bits into an arbitrary
large m number of bits. However, in most current applications people desire an input much
smaller than 2048 and so there’s a separate pseudorandom generator (called the key scheduling
algorithm or KSA) that takes an input of size ` bits, for 40 ≤ ` ≤ 128, and outputs an
initial permutation S. The page http://www.wisdom.weizmann.ac.il/∼itsik/RC4/rc4.
html (written by my friend Itsik Mantin) is a good source of information on RC4 and the
attacks on it.

Blum-Blum-Shub The Blum-Blum-Shub generator is even simpler than RC4 but it is much
less efficient. However it has the advantage that we can relate its security to a well known
problem. Assuming factoring a random n bit integer3 cannot be done be a T -sized circuit
with probability more than ε, this pseudorandom generator will be (poly(T ),poly(ε))-secure.
The input is a number N (of length n bits) and X where 1 ≤ X < N .4 The output will be m
bits where again we can choose m to be as large as we want. The pseudocode is as follows:

num_outputted = 0;
while num_outputted <= m:

X := X*X mod N
num_outputted := num_outputted + 1
output least-significant-bit(X)

3Random here means that we choose random primes p and q of length n/2 bits, where for technical reasons we
require that their remainder modulu 4 is 3, and let n = p · q.

4Actually x should satisfy gcd(X, N) = 1 but this will happen with overwhelmingly high probability for a random
X.
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We’ll prove that a variant of this generator is as secure as factoring later in the course.

Using PRGs to construct an encryption. There is a pretty natural construction of a private
key encryption with key length < message length using a pseudorandom generator.

Let G be the pseudorandom generator, with Gn : {0, 1}n → {0, 1}m for m > n.

The encryption scheme will be the following: Ek(x) = x ⊕ G(k), Dk(y) = y ⊕ G(k). That is,
we use a pseudorandom pad instead of a random pad in the One-Time-Pad scheme. Intu-
itively this should be secure since using a pseudorandom string instead of random should be
good enough for all practical purposes. However, relying on intuition is very dangerous in
cryptography, and so we need to verify this with a proof. Fortunately, this time the intuition
holds:

Theorem 1. Suppose that Gn is (T, ε)-pseudorandom. Then (E,D) is (T/10, 10ε)-indistinguishable.

Proof. Let Yx
M= EUn(x) as usual. We’ll prove that for every x, x′ ∈ {0, 1}m, Yx ≈T/5,5ε Yx′ .

This will imply the result.

In fact we’ll prove this by showing that for every x, Yx is (T/2, 2ε)-pseudorandom and hence
we have that Yx is indistinguishable from Um which is indistinguishable from Yx′ .

That is, we prove the following claim:

Claim 1.1. Let Gn : {0, 1}n → {0, 1}m be a (T, ε)-pseudorandom generator. Let x ∈ {0, 1}m.
Then the distribution Y = Gn(Un)⊕ x is (T/2, 2ε)-pseudorandom.

Proof. The proof is by reduction. Assume, for the sake of contradiction, that there is a T/2
sized circuit C : {0, 1}m → {0, 1} such that∣∣∣Pr[C(Gn(Un)⊕ x) = 1]− Pr[C(Um) = 1]

∣∣∣ > 2ε

We’ll construct a circuit C ′ : {0, 1}m → {0, 1} which will contradict the security of Gn. We
define C ′ in the following way: C ′(y) M= C(y ⊕ x).

Now, the size of C ′ is roughly the size of C plus m (the number of bits it takes to describe
y). Since we always assume that T is much larger than the input length (e.g., T > 100m),
we get that the size of C ′ is at most T .

Now Pr[C ′(Gn(Un)) = 1] is by definition equal to Pr[C(Gn(Un)⊕ x) = 1].

On the other hand Pr[C ′(Um) = 1] = Pr[C(Um ⊕ x) = 1]. However, for every fixed x, the
distribution Um ⊕ x is also equal to the uniform distribution! Thus,

Pr[C(Um ⊕ x) = 1] = Pr[C(Um) = 1]

(Note that the two occurrences of Um in the above equation refer to different (i.e., indepen-
dent) copies of the uniform distribution.)

Thus ∣∣∣Pr[C ′(Gn(Un)) = 1]− Pr[C ′(Um) = 1]
∣∣∣ > 2ε

contradicting the security of Gn.

5



Note: To complete the proof, we need to show that like statisticial indistinguish-
able, computational indistinguishability is transitive. That is, we need to show the
following claim:

Claim 1.2 (Transitivity of Computational Indistinguishability). Let X, Y , Z be
distributions such that X ≈T,ε Y and Y ≈T,ε′ Z. Then X ≈T,ε+ε′ Z

Before proving it let me explain why we need to use it: We want to prove that
for every x, x′ it holds that Yx is indistinguishable from Yx′ but what we proved
is that for every x, Yx is indistinguishable from Un. However, the transitivity will
imply that if Yx and Yx′ are both indistinguishable from Um then they are also
indistinguishable from each other.

Proof. Suppose for the sake of contradiction that there’s a T -sized circuit C with
|Pr[C(X) = 1] − Pr[C(Z) = 1]| > ε + ε′. Let’s use the shorthand pC(X) for
Pr[C(X) = 1] (and similarly define pC(Y ), pC(Z). Note that

pC(X)− pC(Z) = pC(X)− pC(Y ) + pC(Y )− pC(Z) =(
pC(X)− pC(Y )

)
−

(
pC(Y )− pC(Z)

)
The triangle inequality says that for every three real numbers s, t, u ∈ R , |s− u| ≤
|s− t|+ |t− u|. This means that

ε + ε′ < |pC(X)− pC(Z)| ≤ |pC(X)− pC(Y )|+ |pC(Y )− pC(Z)|

but this is impossible since X ≈T,ε Y and hence |pC(X)−pC(Y )| ≤ ε and Y ≈T,ε′ Z
and hence |pC(Y )− pC(Z)| ≤ ε′.

The geometrical viewpoint: Note that it is not accidental that we used the
triangle inequality in the proof. We can view |s− u| as the distance between s and
u. What the triangle inequality says that the distance between s and u is at most
the distance between s and t plus the distance between t and u. Transitivity of
computational indistinguishability is also similar: let ∆T (X, Y ) be the maximum
over T -sized circuits C of |C(X)−C(Y )|. We can think of ∆T (X, Y ) as some kind
of distance function measuring the distance between distributions. The transitiv-
ity lemma says that this function satisfies the triangle inequality, and so it is no
coincidence that we use triangle inequality over the reals to prove it.

Increasing the output length Our the PRG axiom only guaranteed us a pseudorandom gener-
ator with output m larger than n. As far as we know, it may be that m = n + 1. It seems to
be a lot of trouble to get into for reducing the key size by only one bit!

Fortunately, it turns out we can use a PRG with m = n + 1 to construct a PRG with an
arbitrary polynomial stretch.
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Figure 1: Extending output of pseudorandom genertator

Theorem 2. Assume that there exists a PRG. Then for every polynomial p(·), there exists a
PRG G = {Gn} with Gn : {0, 1}n → {0, 1}p(n).

Proof. Assume that we have a PRG PRG′ = {G′n} with G′n : {0, 1}n → {0, 1}n+1. Let p(·)
be a polynomial. We’ll construct a PRG G = {Gn} with Gn : {0, 1}n → {0, 1}p(n) with
running-time(G) equal to roughly p(n) times the running time of G′.

The algorithm for Gn will be as follows: (notation: for a string x ∈ {0, 1}m, and i < j ≤ m,
x[i...j] is xixi+1 · · ·xj)

Input: x ∈ {0, 1}n.

i← 0
x(0) ← x
while i ≤ p(n):

i← i + 1
x(i) ← Gn(x(i−1)

[1...n])

output x
(i)
n+1

Useful property. We’re going to make use of the following property. The statistical dis-
tance satisfies the following property: If ∆(X, Y ) ≤ ε then for every function f(·), ∆(f(X), f(Y )) ≤
ε. It turns out that computational indistinguishability satisfies a similar property, as long as
f(·) is efficiently computable.

Claim 2.1 (Functions of indistinguishable distributions.). Let X, Y over {0, 1}m such that
X ≈T,ε Y and let f : {0, 1}m → {0, 1}m′

be a function computable by a t circuit (for t < T ).
Then, f(X) ≈T−t−100,ε f(Y ).

(The proof of the claim is left as an exercise.)
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Let m = p(n). We define now the following random variables Y (0), . . . , Y (m). The variable
Y (i) will range over {0, 1}n+i and will reflect the state of our pseudorandom generator at the
ith step. That is, Y (0) M= Un, Y (1) M= Gn(Un) , Y (i+1) = Gn(Y (i)

[1...n])Y
(i)
[n+1...n+1].

We’ll prove the following claim:

Claim 2.2. Let t denote the running time of Gn on length-n inputs (note that t is polynomial).
For every 1 ≤ i ≤ m,

Y (i) ≈T−2mti,2iε Un+i

Before proving Claim 2.2, note that it does indeed imply that our generator’s output is
pseudorandom. Firstly, note that if T and ε are super-polynomial then so is T − tm2 and
2mε. Now the output of our pseudorandom generator is simply the last m bits of Y (m) and
so if Y (m) is pseudorandom then so is this output.

Proof of Claim 2.2. We prove this by induction. Y (0) is simply equal to Un so
there’s nothing to prove in that case. For Y (1) = Gn(Y (0)) the claim follows from
the security of Gn. Thus, let i ≥ 1 and assume that Y (i) ≈T−2ti,2iε Un+i and we’ll
prove this for Y (i+1).
Consider the function f : {0, 1}n+i → {0, 1}n+i+1 defined as follows: f(y) =
Gn(y[1...n])y[n+1...n+i]. That is, f(Y (i)) = Y (i+1). Note that f(·) is computable
in 2t time (assume t ≥ m for convenience). We claim that f(Un+i) ≈T−m,ε Un+i+1.
Indeed, any T −m sized distinguisher between these two distribution can be turned
(by hardwiring the last m bits) into a T sized distinguisher for Gn.
Now by Claim 2.1, this implies that if Y (i) ≈T−2mti,2iε Un+i then f(Y (i) ≈T−2mti−2t,2iε

f(Un+1). By transitivity (Claim 1.2), we get that

f(Y (i)) ≈T−2mti−2t,2iε+ε Un+i+1

which implies
f(Y (i)) ≈T−2mt(i+1),(2i+1)ε Un+i+1

Note: This proof technique — proving that two distributions X and Y are indistinguishable
by presenting intermediate distributions X(0), . . . , X(m) with X(0) = X and X(m) = Y and
the showing that X(i) is indistinguishable from X(i+1) — is called the hybrid technique, and
is a very important technique in cryptographic proofs. I recommend that you also review the
description of the same theorem and proof in Goldreich’s book (see course web site for link).
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