
Lecture 3 - Statistical Security, Computational Models

Boaz Barak

September 22, 2005

Admin Project, holidays

Objections to impossibility result Last time we saw that a perfectly secure encryption scheme
requires key size ≥ message size.

Whenever faced with an impossibility result that says we can not do something we want, it
is a good idea to examine the underlying assumptions behind this result, and see if we can
relax these assumption to still get what we want (or at least something close to that).

There are two natural relaxations for the perfect secrecy. We’ll start with the first one, which
is that we can allow the posteriori probability of guessing to be slightly larger than the a-priori.

Statistical security Suppose that we allowed the adversary to have a tiny advantage in its pos-
teriori guessing probability compared to the a-priori probability.

For example, we say that a scheme enjoys ε statistical semantic security if in the semantic
security game the adversary guesses f(x) with probability at most max-prf(X) + ε. Note
that we replaced the word perfect with ε statistical.

Similarly, we can say that a scheme is ε statistically indistinguishable if the probability ad-
versary guesses the messages is at most 1

2 + ε.

If ε is very small (say 10−6 or maybe even 10−100) then ε-secure schemes will be just as good
as perfectly secure schemes for all practical purposes.

Thus, if we could bypass the impossibility result for perfect secrecy using this notion this
would be great.

Equivalence It turns out both of these definitions are again essentially equivalent to a relaxation
of perfect secrecy which we call ε-statistical secrecy. This means that for every x, x′ the
distributions Yx and Yx′ , even if not identical, are still within at most ε statistical distance.

Definition 1. Let X and Y be two distributions over {0, 1}n. The statistical distance of X
and Y , denoted by ∆(X, Y) is defined to be

max
T⊆{0,1}n

∣∣∣Pr[X ∈ T]− Pr[Y ∈ T]
∣∣∣

if ∆(X, Y) ≤ ε we say that X ≡ε Y

Lemma 1.
∆(X, Y) =

1
2

∑
w∈Supp(X)∪Supp(Y)

|Pr[X = w]− Pr[Y = w]|

1

Proof. left as exercise.

Minimal key size for statistically secure schemes. Unfortunately, statistical security doesn’t
enable us to get much shorter keys. In fact, if we use just one bit less the adversary can get
an advantage of 1/4 (which we consider huge — remember that we were hoping for 10−100!).
We’ll prove the following theorem:

Theorem 1. Let (E,D) be a valid encryption with E : {0, 1}n × {0, 1}n+1 → {0, 1}∗. Then
there exist plaintexts x1, x2 with ∆(x1, x2) > 0.1.

Proof. In the proof we’ll use the following seemingly trivial observation: for a random variable
Y , if E[Y] ≤ µ then Pr[Y ≤ µ] > 0.

Let x1 = 0n+1 and let S = Supp(EUn(x1)). Note that |S| ≤ 2n.

Consider the following experiment: we choose a random message x ←R {0, 1}n+1 and define
the following 2n random variables: for every k, Tk(x) = 1 if Ek(x) ∈ S and 0 otherwise.

For every k, Ek(·) is one to one and hence Pr[Tk = 1] ≤ 1/2. This means that E[Tk] ≤ 1/2.

Define T =
∑

k∈{0,1}n Tk. Then

E[T] = E[
∑

k

Tk] =
∑

k

E[Tk] ≤ 2n/2

This means that the probability that Pr[T ≤ 2n/2] > 0 or in other words, there exists x
such that

∑
k Tk(x) ≤ 2n/2. This means that for such x, at most half of the keys k satisfy

Ek(x) ∈ S, or equivalently Pr[EUn(x) ∈ S] ≤ 1/2. Since Pr[EUn(0n+1) ∈ S] = 1 we get that

∆
(
EUn(0n+1), EUn(x)

)
≥ 1/2

This technique — proving the existence of an object with a particular property by proving
that the probability the property is satisfied is positive — is called the probabilistic method.
There’s a beautiful book about it with this name by Alon and Spencer.

Computational Security Unfortunately, we saw that statistical security does not allow us to
really break the impossibility result.

We now turn to a closer examination of that impossibility result. In particular, in real life
people are using encryption schemes with keys shorter than the message size to encrypt all
sort of sensitive information including credit card numbers. Could we use the proof of the
impossibility result to break these schemes and gain notoriety and fortune?

Indeed, the proof of the impossibility result does in fact give a algorithm to break any en-
cryption scheme. It’s even quite simple (10 lines of C code).

The only problem is that if the key is of size n, then this 10 line C program will run in time
roughly 2n. This is going to take quite a long time even for n that is not too large.

Consider a key that is 1KB long (note that memory cards for digital camera typically have at
least 128, 000KB). Even if we take Moore’s law to its limit, and assume that we have placed
on any atom in the observable universe a super-computer operating at the speed of light, we
would still not be able to run 21000 operations before the sun collapses. It’s a safe bet that
any credit cards we manage to steal will be expired by then...

This raises the idea of designing encryption that are unbreakable within any reasonable time.

2

Computationally Secure Encryption The main problem we face is that, while the particular
C program arising from that proof runs in exponential time, we don’t have any guarantee
that there is not another program that is actually efficient. In fact, we already saw this is
the case for the substitution cipher, where the number of possibilities for the key is huge but
still we can break the scheme efficiently.

Another problem is that we want a precise mathematical definition. That is, the previous
perfect secrecy definition was a precise statement about the functions (E,D) that can be
formulated and proven to hold using the tools of mathematics. We don’t want a vague
definition such as “breaking E is very hard” since we can’t work with such a definition.

This means that we need to give a precise mathematical formulation to statements such as
“the problem P can not be solved in reasonable time”. However, this arises the question
of how do we model the adversary’s resources. The adversary may use an IBM, Apple or
Unix system, she may use a network of connected computers, she may use a super computer,
or a special purpose computer she constructed just for this task, perhaps not made out of
silicon but maybe out of analog or biological components, she can also use a mixture of
computer and human intelligence, using say particularly gifted mathematicians to help break
our encryption.

Can we give a mathematically precise definition that implies that a computational problem
cannot be solved in say T years no matter what mixture of these and other resources are
used?

It turns out the answer is most likely “Yes”. To do so, we need to give a mathematical model
that captures the notion of computation in all its forms. The main model we’ll use will be
the model of Boolean circuits.1

Boolean circuits A Boolean circuit is best explained with a picture (see handout for detailed
description). The important parameter with a Boolean circuit is its size which is the number
of vertices (e.g., gates) it contains.

Two basic facts about Boolean circuits:

1. Every function can be computed by a sufficiently large circuit:

Theorem 2. Let f : {0, 1}n → {0, 1}m be some function. Then, there exists a circuit
C of size at most 100mn · 2n that computes f(·).

Proof. We’ll construct m different circuits each of size at most 100n · 2n for each of
the outputs of f(·) and just concatenate them together (thus increasing the size by a
factor of m). This means that without loss of generality we can think of f(·) as having
a single output. Let S be the set of s ∈ {0, 1}n such that this output is 1. Then,

f(x) =
∨
s∈S

(x ?= s)

1We note that the scientific community is still studying whether or not this model of Boolean circuits does bound
all that can be done efficiently in the physical universe. Although it seems that it captures all mechanical and
biological devices that currently exist, a fascinating challenge is posed to this model by quantum computers. These
are hypothetical computing devices that may be built in the future and whose computing power relative to Boolean
circuits is still very much an open question (see Scott Aaronson’s thesis for more on this). However, for almost all
the material of this course the choice of model (e.g., Boolean circuits or Quantum circuits) does not matter much,
and so this debate does not effect us greatly.

3

Consider the function gs : {0, 1}n → {0, 1} where gs(x) = 1 iff x = s. This function
can be implemented by a 4n sized circuit (it is equal to the AND of xi for the i’s where
si = 1 and ¬xi for the i’s where si = 0). Therefore, since |S| ≤ 2n, we get that a single
bit output f(·) can be implemented by a circuit of size at most 4n · 2n.

2. Some functions actually require a circuit of exponential size.

Theorem 3. For every (sufficiently large) n there exists a function f : {0, 1}n → {0, 1}
that can not be computed by a circuit of size 20.9n.

Proof. Since a circuit of size T is a graph of in-degree ≤ T and labels coming out from
a set of size ≤ 3T , it can be described (using an adjacency list representation) using
less than 100T log T bits.
It follows that the number of such circuits is at most 2100T log T . For T = 20.9n this is
equal to M = 2100n·20.9n

and so circuits of that size can compute at most M functions.
However, the number of functions f : {0, 1}n → {0, 1} is 22n

which for sufficiently large
n is much bigger than M . It follows that most of the functions from {0, 1}n to {0, 1}
can not be computed by circuits of size 20.9n.

Infinite functions We’ll sometimes want to talk about functions defined on infinite domains (e.g.,
{0, 1}∗). There are two ways to model that such a function is efficiently computable:

Notation: fn = restriction of f(·) to {0, 1}n.

The class P/poly We say that f : {0, 1}∗ → {0, 1}∗ is in P/poly if there’s a polynomial p : N→ N
such that for every n, fn is computable by a p(n)-sized circuit.

The class P If f(·) is in P/poly then this does not mean that there is a single efficient algorithm
to compute f(·) but rather that there is a different algorithm for each input length. If there
is a actually a single algorithm (for example, there is a polynomial-time C program that can
generate each of these circuits) then we say that f ∈ P.

There is a way to formalize this notion using Turing machines (see handout).

Note that P (P/poly, because P/poly contains all the unary functions — functions that
depend only on the input length and not its contents, and it is not hard to find such functions
that don’t have a single algorithm.2

The Class NP: NP captures the problems whose solution can be efficiently verified. A Boolean
function f : {0, 1}∗ → {0, 1} is in NP if there’s an efficient algorithm V such that f(x) = 1
iff ∃y such that V (x, y) = 1. (See handout for a more formal definition.)

Examples of problems in NP: Planarity, Primality, Traveling Sales Person, Circuit Satisfiabil-
ity, 3SAT, Maximum Independent Set.

NP-completeness Circuit satisfiability has an interesting property - if there’s a polynomial algo-
rithm for it, then there is a polynomial algorithm for every problem in NP.

Proof by reduction Such results are proven by reduction: assume that there is an algorithm A
for CSAT, and let V be the verification algorithm for the problem. Construct a circuit C
where C(y) = 1 iff V (x, y) = 1. Then, there’s a satisfying assignment for C iff ∃y such that
V (x, y) = 1.

2For people familiar with cardinalities, note that the number of such functions is 2|N| = ℵ where the number of
possible algorithms is only ℵ0.

4

Other NP complete problems. By a chain of reduction we can establish that other problems
are NP-complete. CSAT→ 3SAT→ INDSET.

5

